$1 \Rightarrow x$	$3x + 2 = 1 \implies x = -1/3$ 3x + 2 = -1 = -1	B1 M1 A1	x = -1/3 from a correct method – must be exact
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$(3x + 2)^{2} = 1$ $9x^{2} + 12x + 3 = 0$ $3x^{2} + 4x + 1 = 0$ (3x + 1)(x + 1) = 0 x = -1/3 or x = -1	M1 B1 A1 [3]	Squaring and expanding correctly x = -1/3 x = -1
2	$x = \frac{1}{2}$ $\cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}$	B1 M1 A1 [3]	M1A0 for 1.04 or 60°
3	$fg(x) = \ln(x^3)$ = 3 ln x Stretch s.f. 3 in y direction	M1 A1 B1 [3]	$\ln(x^3) = 3 \ln x$
4	$T = 30 + 20e^{0} = 50$ $dT/dt = -0.05 \times 20e^{-0.05t} = -e^{-0.05t}$ When $t = 0$, $dT/dt = -1$ When $T = 40$, $40 = 30 + 20e^{-0.05t}$ $\Rightarrow e^{-0.05t} = \frac{1}{2}$ $\Rightarrow -0.05t = \ln \frac{1}{2}$ $\Rightarrow t = -20 \ln \frac{1}{2} = 13.86$ (mins)	B1 M1 A1cao M1 M1 A1cao [6]	50 correct derivative -1 (or 1) substituting $T = 40$ taking lns correctly or trial and improvement – one value above and one below or 13.9 or 13 mins 52 secs or better www condone secs

PMT

Mark Scheme

June 2005

5 $\int_{0}^{1} \frac{x}{2x+1} dx \text{let } u = 2x+1$ $\Rightarrow du = 2dx, x = \frac{u-1}{2}$ When $x = 0, u = 1$, when $x = 1, u = 3$ $\frac{1}{2}(u-1) = 1 \text{ and } 1$	M1 A1	Substituting $\frac{x}{2x+1} = \frac{u-1}{2u}$ o.e. $\frac{1}{4} \int \frac{u-1}{u} du$ o.e. [condone no du]
$= \int_{1}^{3} \frac{\frac{1}{2}(u-1)}{u} \frac{1}{2} du = \frac{1}{4} \int_{1}^{3} \frac{u-1}{u} du$	B1	converting limits
$=\frac{1}{4}\int_{1}^{3}(1-\frac{1}{u})\mathrm{d}u$		
$=\frac{1}{4}\left[u-\ln u\right]_{1}^{3}$	M1	dividing through by <i>u</i>
$= \frac{1}{4} [3 - \ln 3 - 1 + \ln 1]$	A1	$\frac{1}{4} \left[u - \ln u \right] \text{ o.e.} - \text{ft their } \frac{1}{4} \text{ (only)}$
$= \frac{1}{4}(2 - \ln 3)$	E1 [6]	must be some evidence of substitution
$6 \qquad \qquad \mathbf{y} = \frac{x}{2+3\ln x}$	M1	Quotient rule consistent with their derivatives or product rule + chain rule on $(2+3x)^{-1}$
$\Rightarrow \frac{dy}{dx} = \frac{(2+3\ln x).1 - x.\frac{3}{x}}{(2+3\ln x)^2}$	B1	$\frac{d}{dx}(\ln x) = \frac{1}{x} \frac{\sin x}{\sin x}$
$dx \qquad (2+3\ln x)^2$	A1	$\frac{dx}{dx}$ $\frac{dx}{x}$ $\frac{dx}{x}$ correct expression
$= 2 + 3 \ln x - 3$		conect expression
$=\frac{2+3\ln x-3}{(2+3\ln x)^2}$		
$=\frac{3\ln x-1}{(2+3\ln x)^2}$		
When $\frac{dy}{dx} = 0$, $3\ln x - 1 = 0$	M1	their numerator $= 0$
		(or equivalent step from product rule formulation)
\Rightarrow $x = e^{1/3}$	A1cao	M0 if denominator = 0 is pursued $x = e^{1/3}$
$\Rightarrow y = \frac{e^{1/3}}{2+1} = \frac{1}{3}e^{1/3}$	M1 A1cao [7]	substituting for their x (correctly) Must be exact: -0.46 is M1A0
7 $y^2 + y = x^3 + 2x$ $x = 2 \Rightarrow y^2 + y = 12$	M1	Substituting $x = 2$
$\Rightarrow y^2 + y - 12 = 0$		
$ \Rightarrow y^2 + y - 12 = 0 \Rightarrow (y - 3)(y + 4) = 0 \Rightarrow y = 3 \text{ or } -4. $	A1 A1	y = 3 $y = -4$
$2y\frac{dy}{dx} + \frac{dy}{dx} = 3x^2 + 2$	M1	Implicit differentiation – LHS must be correct
$\Rightarrow \frac{dy}{dx}(2y+1) = 3x^2 + 2$		
$\Rightarrow \frac{dx}{dx} = \frac{3x^2 + 2}{2y + 1}$	A1cao	
At (2, 3), $\frac{dy}{dx} = \frac{12+2}{6+1} = 2$	M1	substituting $x = 2$, $y = 3$ into their dy/dx, but must require both x and one of their y to be substituted
At (2, -4), $\frac{dy}{dx} = \frac{12+2}{-8+1} = -2$	A1 cao A1 cao [8]	2 -2

Mark Scheme

June 2005

PMT

Section B

8 (i) At P, $x \sin 3x = 0$ $\Rightarrow \sin 3x = 0$ $\Rightarrow 3x = \pi$ $\Rightarrow x = \pi/3$	M1 A1 A1cao [3]	$x \sin 3x = 0$ $3x = \pi \text{ or } 180$ $x = \pi/3 \text{ or } 1.05 \text{ or better}$
(ii) When $x = \pi/6$, $x \sin 3x = \frac{\pi}{6} \sin \frac{\pi}{2} = \frac{\pi}{6}$ $\Rightarrow Q(\pi/6, \pi/6)$ lies on line $y = x$	E1 [1]	$y = \frac{\pi}{6}$ or $x \sin 3x = x \implies \sin 3x = 1$ etc. Must conclude in radians, and be exact
(iii) $y = x \sin 3x$ $\Rightarrow \frac{dy}{dx} = x.3 \cos 3x + \sin 3x$ At Q, $\frac{dy}{dx} = \frac{\pi}{6}.3 \cos \frac{\pi}{2} + \sin \frac{\pi}{2} = 1$ = gradient of $y = xSo line touches curve at this point$	B1 M1 A1cao M1 A1ft E1 [6]	d/dx (sin 3x) = 3cos 3x Product rule consistent with their derivs 3x cos 3x+ sin 3x substituting $x = \pi/6$ into their derivative = 1 ft dep 1 st M1 = gradient of $y = x$ (www)
(iv) Area under curve $= \int_{0}^{\frac{\pi}{6}} x \sin 3x dx$ Integrating by parts, $u = x$, $dv/dx = \sin 3x$ $\Rightarrow v = -\frac{1}{3}\cos 3x$ $\int_{0}^{\frac{\pi}{6}} x \sin 3x dx = \left[-\frac{1}{3}x\cos 3x\right]_{0}^{\frac{\pi}{6}} + \int_{0}^{\frac{\pi}{6}} \frac{1}{3}\cos 3x dx$ $= -\frac{1}{3} \cdot \frac{\pi}{6}\cos \frac{\pi}{2} + \frac{1}{3} \cdot 0 \cdot \cos 0 + \left[\frac{1}{9}\sin 3x\right]_{0}^{\frac{\pi}{6}}$ $= \frac{1}{9}$ Area under line $= \frac{1}{2} \times \frac{\pi}{6} \times \frac{\pi}{6} = \frac{\pi^{2}}{72}$ So area required $= \frac{\pi^{2}}{72} - \frac{1}{9}$ $= \frac{\pi^{2} - 8}{72} *$	M1 A1cao A1ft M1 A1 B1 E1 [7]	Parts with $u = x dv/dx = \sin 3x \Rightarrow$ $v = -\frac{1}{3}\cos 3x$ [condone no negative] + $\left[\frac{1}{9}\sin 3x\right]_{0}^{\frac{\pi}{6}}$ substituting (correct) limits $\frac{1}{9}$ www $\frac{\pi^{2}}{72}$ www

June 2005

		1
9 (i) $f(-x) = \ln[1 + (-x)^2]$ = $\ln[1 + x^2] = f(x)$	M1 E1	If verifies that $f(-x) = f(x)$ using a particular point, allow SCB1 For $f(-x) = \ln(1 + x^2) = f(x)$ allow M1E0 For $f(-x) = \ln(1 + -x^2) = f(x)$ allow M1E0
Symmetrical about Oy	B1 [3]	or 'reflects in Oy', etc
(ii) $y = \ln(1 + x^2)$ let $u = 1 + x^2$ dy/du = 1/u, $du/dx = 2x\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	M1 B1	Chain rule 1/ <i>u</i> soi
	A1	
$=\frac{1}{u}.2x = \frac{2x}{1+x^2}$		
When $x = 2$, $dy/dx = 4/5$.	A1cao [4]	
(iii) The function is not one to one for this domain	B1 [1]	Or many to one
(iv) (3)	M1	g(x) is $f(x)$ reflected in $y = x$
(3)	A1	Reasonable shape and domain, i.e. no $-\text{ve } x$ values, inflection shown, does not cross $y = x$ line
Domain for $g(x) = 0 \le x \le \ln 10$ $y = \ln(1 + x^2) x \leftrightarrow y$ $x = \ln(1 + y^2)$ $\Rightarrow e^x = 1 + y^2$	B1 M1 M1	Condone y instead of x Attempt to invert function Taking exponentials
$\Rightarrow e^{x} - 1 = y^{2}$ $\Rightarrow y = \sqrt{e^{x} - 1}$ so g(x) = $\sqrt{e^{x} - 1}$ *	E1	$g(x) = \sqrt{(e^x - 1)^*} www$
or g f(x) = g[ln(1 + x ²)] = $\sqrt{e^{\ln(1+x^2)} - 1}$	M1 M1	forming g f(x) or f g(x) $e^{\ln(1+x^2)} = 1 + x^2$
$= (1 + x^2) - 1$ $= x$	E1 [6]	$or \ln(1 + e^x - 1) = x$ www
(v) $g'(x) = \frac{1}{2} (e^x - 1)^{-1/2} \cdot e^x$ $\Rightarrow g'(\ln 5) = \frac{1}{2} (e^{\ln 5} - 1)^{-1/2} \cdot e^{\ln 5}$ $= \frac{1}{2} (5 - 1)^{-1/2} \cdot 5$ $= \frac{5}{4}$	B1 B1 M1 E1cao	$\frac{1/2}{x} u^{-1/2}$ soi × e ^x substituting ln 5 into g' - must be some evidence of substitution
Reciprocal of gradient at P as tangents are reflections in $y = x$.	B1 [5]	Must have idea of reciprocal. Not 'inverse'.

Mark Scheme 4753 January 2006

$ \begin{array}{rcl} 1 & y = (1+6x)^{1/3} \\ \Rightarrow & \frac{dy}{dx} = \frac{1}{3}(1+6x)^{-2/3}.6 \\ & = 2(1+6x)^{-2/3} \\ & = 2[(1+6x)^{1/3}]^{-2} \\ & = \frac{2}{y^2} * \\ \end{array} $ or $y^3 = 1+6x$ $\Rightarrow & x = (y^3-1)/6$	M1 B1 A1 E1 M1 A1	Chain rule $\frac{1}{3}(1+6x)^{-2/3}$ or $\frac{1}{3}u^{-2/3}$ any correct expression for the derivative www Finding x in terms of y
$\Rightarrow \frac{dx}{dy} = \frac{3y^2}{6} = \frac{y^2}{2}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{(dx/dy)} = \frac{2}{y^2} *$	B1 E1	$y^2/2$ o.e.
or $y^3 = 1 + 6x$ $\Rightarrow 3y^2 dy/dx = 6$ $\Rightarrow dy/dx = 6/3y^2 = 2/y^2 *$	M1 A1 A1 E1 [4]	together with attempt to differentiate implicitly $3y^2 dy/dx$ = 6
2 (i) When $t = 0$, $P = 5 + a = 8$ $\Rightarrow a = 3$ When $t = 1$, $5 + 3e^{-b} = 6$ $\Rightarrow e^{-b} = 1/3$ $\Rightarrow -b = \ln 1/3$ $\Rightarrow b = \ln 3 = 1.10$ (3 s.f.)	M1 A1 M1 M1 A1ft	substituting $t = 0$ into equation Forming equation using their <i>a</i> Taking lns on correct re-arrangement (ft their <i>a</i>)
(ii) 5 million	B1 [6]	or <i>P</i> = 5
3 (i) $\ln (3x^2)$ (ii) $\ln 3x^2 = \ln(5x + 2)$ $\Rightarrow 3x^2 = 5x + 2$ $\Rightarrow 3x^2 - 5x - 2 = 0*$ (iii) $(3x + 1)(x - 2) = 0$ $\Rightarrow x = -1/3 \text{ or } 2$ $x = -1/3 \text{ is not valid as } \ln (-1/3) \text{ is not defined}$	B1 B1 M1 E1 M1 A1cao B1ft	$2\ln x = \ln x^{2}$ $\ln x^{2} + \ln 3 = \ln 3x^{2}$ Anti-logging Factorising or quadratic formula ft on one positive and one pegative root
x = -1/3 is not valid as in (-1/3) is not defined	[7]	ft on one positive and one negative root

		1
4 (i) $\frac{dV}{dt} = 2$ (ii) $\tan 30 = 1/\sqrt{3}$ = r/h	B1	
$\Rightarrow h = \sqrt{3} r$ $\Rightarrow V = \frac{1}{3}\pi r^2 \cdot \sqrt{3}r = \frac{\sqrt{3}}{3}\pi r^3 *$ $\frac{dV}{dr} = \sqrt{3}\pi r^2$ (iii) When $r = 2$, $dV/dr = 4\sqrt{3}\pi$ $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}$ $\Rightarrow 2 = 4\sqrt{3}\pi dr/dt$ $\Rightarrow dr/dt = 1/(2\sqrt{3}\pi)$ or 0.092 cm s ⁻¹	M1 E1 B1 M1 A1cao	Correct relationship between r and h in any form From exact working only o.e. e.g. $(3\sqrt{3}/3)\pi r^2$ or $\frac{dr}{dt} = \frac{dr}{dV} \cdot \frac{dV}{dt}$ substituting 2 for dV/dt and r = 2 into their dV/dr
5(i) $y^3 = 2xy + x^2$ $\Rightarrow 3y^2 \frac{dy}{dx} = 2x \frac{dy}{dx} + 2y + 2x$ $\Rightarrow (3y^2 - 2x) \frac{dy}{dx} = 2y + 2x$ $\Rightarrow \frac{dy}{dx} = \frac{2(x+y)}{3y^2 - 2x} *$ (ii) $\frac{dx}{dy} = \frac{3y^2 - 2x}{2(x+y)}$	B1 B1 M1 E1 B1cao [5]	$3y^{2} \frac{dy}{dx} =$ $2x \frac{dy}{dx} + 2y + 2x$ collecting dy/dx terms on one side www
6(i) $y = 1 + 2\sin x \ y \leftrightarrow x$ $\Rightarrow x = 1 + 2\sin y$ $\Rightarrow x - 1 = 2\sin y$ $\Rightarrow (x - 1)/2 = \sin y$ $\Rightarrow y = \arcsin(\frac{x-1}{2})^*$ Domain is $-1 \le x \le 3$ (ii) A is $(\pi/2, 3)$ B is $(1, 0)$ C is $(3, \pi/2)$	M1 A1 E1 B1 B1cao B1cao B1ft [7]	Attempt to invert Allow $\pi/2 = 1.57$ or better ft on their A

7(i) $2x - x \ln x = 0$ $\Rightarrow x(2 - \ln x) = 0$ $\Rightarrow (x = 0) \text{ or } \ln x = 2$ $\Rightarrow \text{ at A, } x = e^2$	M1 A1 [2]	Equating to zero
(ii) $\frac{dy}{dx} = 2 - x \cdot \frac{1}{x} - \ln x \cdot 1$ $= 1 - \ln x$ $\frac{dy}{dx} = 0 \Rightarrow 1 - \ln x = 0$ $\Rightarrow \ln x = 1, x = e$ When $x = e, y = 2e - e \ln e = e$ So B is (e, e)	M1 B1 A1 M1 A1cao B1ft	Product rule for $x \ln x$ $d/dx (\ln x) = 1/x$ $1 - \ln x$ o.e. equating their derivative to zero x = e y = e
	[6]	
(iii) At A, $\frac{dy}{dx} = 1 - \ln e^2 = 1 - 2$ = -1 At C, $\frac{dy}{dx} = 1 - \ln 1 = 1$	M1 A1cao	Substituting x=1 or their e ² into their derivative -1 and 1
$1 \times -1 = -1 \Longrightarrow$ tangents are perpendicular	E1 [3]	www
(iv) Let $u = \ln x$, $dv/dx = x$ $\Rightarrow v = \frac{1}{2}x^2 \int x \ln x dx = \frac{1}{2}x^2 \ln x - \int \frac{1}{2}x^2 \cdot \frac{1}{x} dx$ $= \frac{1}{2}x^2 \ln x - \frac{1}{2}\int x dx$	M1 A1	Parts: $u = \ln x$, $dv/dx = x \Longrightarrow v = \frac{1}{2} x^2$
$2^{n-1111} = \frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2} + c^{*}$ $A = \int_{1}^{e} (2x - x\ln x)dx$ $= \left[x^{2} - \frac{1}{2}x^{2}\ln x + \frac{1}{4}x^{2}\right]_{1}^{e}$ $= (e^{2} - \frac{1}{2}e^{2}\ln e + \frac{1}{4}e^{2}) - (1 - \frac{1}{2}1^{2}\ln 1 + \frac{1}{4}1^{2})$ $= \frac{3}{4}e^{2} - \frac{5}{4}$	E1 B1 B1 M1 A1 cao [7]	correct integral and limits $\left[x^2 - \frac{1}{2}x^2 \ln x + \frac{1}{4}x^2\right]$ o.e. substituting limits correctly

	1	[]
8 (i) $f(-x) = \frac{\sin(-x)}{2 - \cos(-x)}$ = $\frac{-\sin(x)}{2 - \cos(x)}$	M1	substituting $-x$ for x in $f(x)$
=-f(x)	A1	
$-\pi$ π	B1	Graph completed with rotational symmetry about O.
	[3]	
(ii) $f'(x) = \frac{(2 - \cos x) \cos x - \sin x \cdot \sin x}{(2 - \cos x)^2}$	M1	Quotient or product rule consistent with their derivatives
$= \frac{2\cos x - \cos^2 x - \sin^2 x}{(2 - \cos x)^2}$	A1	Correct expression
$=\frac{2\cos x-1}{(2-\cos x)^2}$ *	E1	
$f'(x) = 0 \text{ when } 2\cos x - 1 = 0$ $\Rightarrow \cos x = \frac{1}{2}, x = \frac{\pi}{3}$	M1 A1	numerator = 0
When $x = \pi/3$, $y = \frac{\sin(\pi/3)}{2 - \cos(\pi/3)} = \frac{\sqrt{3}/2}{2 - 1/2}$	M1	Substituting their $\pi/3$ into y
$=\frac{\sqrt{3}}{3}$	A1	o.e. but exact
So range is $-\frac{\sqrt{3}}{3} \le y \le \frac{\sqrt{3}}{3}$	B1ft [8]	ft their $\frac{\sqrt{3}}{3}$
(iii) $\int_0^{\pi} \frac{\sin x}{2 - \cos x} dx$ let $u = 2 - \cos x$	M1	$\int \frac{1}{u} du$
$\Rightarrow du/dx = \sin x$ When $x = 0$, $u = 1$; when $x = \pi$, $u = 3$	B1	u = 1 to 3
$= \int_{1}^{3} \frac{1}{u} du$ $= \left[\ln u \right]_{1}^{3}$	A1ft	[ln <i>u</i>]
$= \ln 3 - \ln 1 = \ln 3$	A1cao	
$or = [\ln(2 - \cos x)]_0^{\pi}$ = ln 3 - ln 1 = ln 3	M2 A1 A1 cao [4]	$[k \ln (2 - \cos x)]$ k = 1
(iv) $-\pi/2$ $\pi/2$	B1ft [1]	Graph showing evidence of stretch s.f. $\frac{1}{2}$ in x – direction
 (v) Area is stretched with scale factor ¹/₂ So area is ¹/₂ ln 3 	M1 A1ft [2]	soi ¹ /2 their ln 3

Mark Scheme 4753 June 2006

1 3x-2 = x $\Rightarrow 3x-2 = x \Rightarrow 2x = 2 \Rightarrow x = 1$ or $2 - 3x = x \Rightarrow 2 = 4x \Rightarrow x = \frac{1}{2}$ or $(3x-2)^2 = x^2$ $\Rightarrow 8x^2 - 12x + 4 = 0 \Rightarrow 2x^2 - 3x + 1 = 0$ $\Rightarrow (x-1)(2x-1) = 0,$	B1 M1 A1 M1	x = 1 solving correct quadratic
$\Rightarrow x = 1, \frac{1}{2}$	A1 A1	
	[3]	
2 let $u = x$, $dv/dx = \sin 2x \Rightarrow v = -\frac{1}{2}\cos 2x$	M1	parts with $u = x$, $dv/dx = \sin 2x$
$\Rightarrow \int_{0}^{\pi/6} x \sin 2x dx = \left[x - \frac{1}{2} \cos 2x \right]_{0}^{\pi/6} + \int_{0}^{\pi/6} \frac{1}{2} \cos 2x \cdot 1 dx$	A1	T.
$= \frac{\pi}{6} \cdot -\frac{1}{2}\cos\frac{\pi}{3} - 0 + \left[\frac{1}{4}\sin 2x\right]_{0}^{\frac{\pi}{6}}$	B1ft	$\dots + \left[\frac{1}{4}\sin 2x\right]_{0}^{\overline{6}}$
$=-\frac{\pi}{24}+\frac{\sqrt{3}}{8}$	M1	substituting limits
21 0	B1	$\cos \pi/3 = \frac{1}{2}$, $\sin \pi/3 = \sqrt{3}/2$ soi www
$=\frac{3\sqrt{3}-\pi}{24}*$	E1	
	[6]	
	M1	
3 (i) $x-1 = \sin y$ $\Rightarrow x = 1 + \sin y$	M1 A1	
$\Rightarrow dx/dy = \cos y$	E1	www
(ii) When $x = 1.5$, $y = \arcsin(0.5) = \pi/6$	M1 A1	condone 30° or 0.52 or better
$\frac{dy}{dx} = \frac{1}{\cos y}$	M1	or $\frac{dy}{dx} = \frac{1}{\sqrt{1-(x-1)^2}}$
$=$ $\frac{1}{\sqrt{2}}$		$dx \sqrt{1 - (x - 1)^2}$
$ \begin{array}{r} \cos \pi / 6 \\ = 2/\sqrt{3} \end{array} $	A1	or equivalent, but must be exact
	[7]	
4(i) $V = \pi h^2 - \frac{1}{3}\pi h^3$		
5	M1	expanding brackets (correctly) or product rule
$\Rightarrow \frac{dV}{dh} = 2\pi h - \pi h^2$	A1	oe
(ii) $\frac{dV}{dt} = 0.02$	B1	soi
$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$	M1	$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$ oe
		$dt = dh \cdot dt$
$\Rightarrow \frac{dh}{dt} = \frac{0.02}{dV/dh} = \frac{0.02}{2\pi h - \pi h^2}$	M1dep	substituting $h = 0.4$ into their $\frac{dV}{dh}$ and
When $h = 0.4$, $\Rightarrow \frac{dh}{dt} = \frac{0.02}{0.8\pi - 0.16\pi} = 0.0099 \text{m/min}$	A1cao	$\frac{dV}{dt} = 0.02$
$at = 0.8\pi - 0.16\pi$	[6]	<i>dt</i> 0.01 or better
		or 1/32π

Mark Scheme

June 2006

5(i)	$a^{2} + b^{2} = (2t)^{2} + (t^{2} - 1)^{2}$ = 4t^{2} + t^{4} - 2t^{2} + 1 = t^{4} + 2t^{2} + 1 = (t^{2} + 1)^{2} = c^{2}	M1 M1 E1	substituting for <i>a</i> , <i>b</i> and <i>c</i> in terms of <i>t</i> Expanding brackets correctly www
(ii) ⇒	$c = \sqrt{(20^2 + 21^2)} = 29$ For example: $2t = 20 \Rightarrow t = 10$ $t^2 - 1 = 99$ which is not consistent with 21	B1 M1 E1 [6]	Attempt to find <i>t</i> Any valid argument or E2 'none of 20, 21, 29 differ by two'.
6 (i)	$M_0 \longrightarrow t$	B1 B1	Correct shape Passes through $(0, M_0)$
(ii)	$\frac{M}{M_0} = e^{-0.000121 \times 5730} = e^{-0.6933} \approx \frac{1}{2}$	M1 E1	substituting $k = -0.00121$ and $t = 5730$ into equation (or ln eqn) showing that $M \approx \frac{1}{2} M_0$
(iii)	$\frac{M}{M_0} = e^{-kT} = \frac{1}{2}$ $\Rightarrow \ln \frac{1}{2} = -kT$	M1 M1	substituting $M/M_0 = \frac{1}{2}$ into equation (oe) taking lns correctly
(iv)	$\Rightarrow \ln 2 = kT$ $\Rightarrow T = \frac{\ln 2}{k} *$ $T = \frac{\ln 2}{2.88 \times 10^{-5}} \approx 24000 \text{ years}$	E1 B1 [8]	24 000 or better

4753

Mark Scheme

June 2006

7(i)	<i>x</i> = 1	B1 [1]	
(ii)	$\frac{dy}{dx} = \frac{(x-1)2x - (x^2 + 3).1}{(x-1)^2}$ $= \frac{2x^2 - 2x - x^2 - 3}{(x-1)^2}$ $= \frac{x^2 - 2x - 3}{(x-1)^2}$	M1 A1	Quotient rule correct expression
	$dy/dx = 0 \text{ when } x^2 - 2x - 3 = 0$ $\Rightarrow (x - 3)(x + 1) = 0$ $\Rightarrow x = 3 \text{ or } -1$ When $x = 3, y = (9 + 3)/2 = 6$ So P is (3, 6)	M1 M1 A1 B1ft [6]	their numerator = 0 solving quadratic by any valid method x = 3 from correct working y = 6
(iii)	Area = $\int_{2}^{3} \frac{x^{2} + 3}{x - 1} dx$	M1	Correct integral and limits
	$u = x - 1 \Longrightarrow du/dx = 1, du = dx$ When $x = 2, u = 1$; when $x = 3, u = 2$ $c^2 (u+1)^2 + 3$	B1	Limits changed, and substituting $dx = du$
	$= \int_{1}^{2} \frac{(u+1)^{2}+3}{u} du$ $= \int_{1}^{2} \frac{u^{2}+2u+4}{u} du$	B1	substituting $\frac{(u+1)^2+3}{u}$
	$= \int_{1}^{2} (u+2+\frac{4}{u}) du^{*}$	E1	www
	$= \left[\frac{1}{2}u^{2} + 2u + 4\ln u\right]_{1}^{2}$	B1	$[\frac{1}{2}u^2 + 2u + 4\ln u]$
	$= (2 + 4 + 4\ln 2) - (\frac{1}{2} + 2 + 4\ln 1)$ = $3\frac{1}{2} + 4\ln 2$	M1 A1cao [7]	substituting correct limits
	$e^{y} = \frac{x^2 + 3}{x - 1}$		
	$e^{y}\frac{dy}{dx} = \frac{x^{2}-2x-3}{(x-1)^{2}}$	M1	$e^{y}dy/dx = $ their f'(x) or $xe^{y} - e^{y} = x^{2} + 3$
⇒	$\frac{dy}{dx} = e^{-y} \frac{x^2 - 2x - 3}{(x - 1)^2}$	A1ft	$\Rightarrow e^{y} + xe^{y} \frac{dy}{dx} - e^{y} \frac{dy}{dx} = 2x$ $dy = 2x - e^{y}$
	$1 x = 2, e^{y} = 7 \Longrightarrow$	B1	$\Rightarrow \frac{dy}{dx} = \frac{2x - e^y}{e^y(x - 1)}$ y = ln 7 or 1.95 or $e^y = 7$
⇒	$\frac{dy}{dx} = \frac{1}{7} \cdot \frac{4 - 4 - 3}{1} = -\frac{3}{7}$	A1cao [4]	or $\frac{dy}{dx} = \frac{4-7}{7(2-1)} = -\frac{3}{7}$ or -0.43 or better

	1	۱ ۱
8 (i) (A) (B) (B)	B1 B1 M1 A1 [4]	Zeros shown every $\pi/2$. Correct shape, from $-\pi$ to π Translated in <i>x</i> -direction π to the left
(ii) $f'(x) = -\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x$ $f'(x) = 0$ when $-\frac{1}{5}e^{-\frac{1}{5}x}\sin x + e^{-\frac{1}{5}x}\cos x = 0$ $\Rightarrow \frac{1}{5}e^{-\frac{1}{5}x}(-\sin x + 5\cos x) = 0$ $\Rightarrow \sin x = 5\cos x$ $\Rightarrow \frac{\sin x}{\cos x} = 5$ $\Rightarrow \tan x = 5^*$ $\Rightarrow x = 1.37(34)$ $\Rightarrow y = 0.75$ or $0.74(5)$	B1 B1 M1 E1 B1 B1 [6]	$e^{-\frac{1}{5}x} \cos x$ $-\frac{1}{5}e^{-\frac{1}{5}x} \sin x$ dividing by $e^{-\frac{1}{5}x}$ www 1.4 or better, must be in radians 0.75 or better
(iii) $f(x+\pi) = e^{-\frac{1}{5}(x+\pi)} \sin(x+\pi)$ $= e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin(x+\pi)$ $= -e^{-\frac{1}{5}x} e^{-\frac{1}{5}\pi} \sin x$ $= -e^{-\frac{1}{5}\pi} f(x)^{*}$ $\int_{\pi}^{2\pi} f(x) dx \text{let } u = x - \pi, du = dx$ $= \int_{0}^{\pi} f(u+\pi) du$ $= \int_{0}^{\pi} -e^{-\frac{1}{5}\pi} f(u) du$ $= -e^{-\frac{1}{5}\pi} \int_{0}^{\pi} f(u) du^{*}$ Area enclosed between π and 2π $= (-)e^{-\frac{1}{5}\pi} \times \text{area between } 0 \text{ and } \pi.$	M1 A1 A1 E1 B1 B1 B1 ep E1 B1 [8]	$e^{-\frac{1}{5}(x+\pi)} = e^{-\frac{1}{5}x} \cdot e^{-\frac{1}{5}\pi}$ $\sin(x+\pi) = -\sin x$ www $\int f(u+\pi)du$ limits changed using above result or repeating work or multiplied by 0.53 or better

Mark Scheme 4753 January 2007

1 (i) P is (2, 1)	B1	
(ii) $ x = 1\frac{1}{2}$ $\Rightarrow x = (-1\frac{1}{2}) \operatorname{or} 1\frac{1}{2}$ $ x-2 +1=1\frac{1}{2} \Rightarrow x-2 = \frac{1}{2}$ $\Rightarrow x = (2\frac{1}{2}) \operatorname{or} 1\frac{1}{2}$	M1 A1 M1 E1	allow $x = 1\frac{1}{2}$ unsupported or $\left 1\frac{1}{2}-2\right +1 = \frac{1}{2}+1 = 1\frac{1}{2}$
or by solving equation directly: $ x-2 +1 = x $ $\Rightarrow 2-x+1 = x$ $\Rightarrow x = 1\frac{1}{2}$ $\Rightarrow y = x = 1\frac{1}{2}$	M1 M1 A1 E1 [4]	equating from graph or listing possible cases
$2 \int_{1}^{2} x^{2} \ln x dx u = \ln x dv / dx = x^{2} \Rightarrow v = \frac{1}{3} x^{3}$ $= \left[\frac{1}{3} x^{3} \ln x\right]_{1}^{2} - \int_{1}^{2} \frac{1}{3} x^{3} \cdot \frac{1}{x} dx$ $= \frac{8}{2} \ln 2 - \int_{1}^{2} \frac{1}{2} x^{2} dx$	M1 A1	Parts with $u = \ln x dv/dx = x^2 \Rightarrow v = x^3/3$
$= \frac{8}{3} \ln 2 - \left[\frac{1}{9}x^{3}\right]_{1}^{2}$ = $\frac{8}{3} \ln 2 - \frac{8}{9} + \frac{1}{9}$ = $\frac{8}{3} \ln 2 - \frac{7}{9}$	A1 M1 A1 cao [5]	$\begin{bmatrix} \frac{1}{9}x^3 \end{bmatrix}$ substituting limits o.e. – not ln 1
3 (i) When $t = 0$, $V = 10\ 000$ $\Rightarrow 10\ 000 = Ae^0 = A$	M1 A1	$ \begin{array}{l} 10\ 000 = Ae^{0} \\ A = 10\ 000 \end{array} $
When $t = 3$, $V = 6000$ $\Rightarrow 6000 = 10\ 000\ e^{-3k}$ $\Rightarrow -3k = \ln(0.6) = -0.5108$ $\Rightarrow k = 0.17(02)$	M1 M1 A1 [5]	taking lns (correctly) on their exponential equation - not logs unless to base 10 art 0.17 or –(ln 0.6)/3 oe
(ii) $2000 = 10\ 000e^{-kt}$ $\Rightarrow -kt = \ln 0.2$ $\Rightarrow t = -\ln 0.2 / k = 9.45$ (years)	M1 A1 [2]	taking lns on correct equation (consistent with their <i>k</i>) allow art 9.5, but not 9.

4 Perfect squares are		
0, 1, 4, 9, 16, 25, 36, 49, 64, 81 none of which end in a 2, 3, 7 or 8.	M1 E1	Listing all 1- and 2- digit squares. Condone absence of 0^2 , and listing squares of 2 digit nos (i.e. $0^2 - 19^2$)
Generalisation: no perfect squares end in a 2, 3, 7 or 8.	B1 [3]	For extending result to include further square numbers.
5 (i) $y = \frac{x^2}{2x+1}$ $\Rightarrow \frac{dy}{dx} = \frac{(2x+1)2x - x^2 \cdot 2}{(2x+1)^2}$ $= \frac{2x^2 + 2x}{(2x+1)^2} = \frac{2x(x+1)}{(2x+1)^2} *$	M1 A1	Use of quotient rule (or product rule) Correct numerator – condone missing bracket provided it is treated as present
$(2x+1)^2 (2x+1)^2$	A1 E1 [4]	Correct denominator www –do not condone missing brackets
(ii) $\frac{dy}{dx} = 0$ when $2x(x + 1) = 0$ $\Rightarrow \qquad x = 0 \text{ or } -1$ y = 0 or -1	B1 B1 B1 B1 [4]	Must be from correct working: SC -1 if denominator = 0
6(i) QA = 3 − y, PA = 6 − (3 − y) = 3 + y By Pythagoras, PA ² = OP ² + OA ² ⇒ (3 + y) ² = x ² + 3 ² = x ² + 9. *	B1 B1 E1 [3]	must show some working to indicate Pythagoras (e.g. $x^2 + 3^2$)
(ii) Differentiating implicitly: $2(y+3)\frac{dy}{dx} = 2x$	M1	Allow errors in RHS derivative (but not LHS) - notation should be correct
$\Rightarrow \frac{dy}{dx} = \frac{x}{y+3}^*$	E1	brackets must be used
$or 9 + 6y + y^2 = x^2 + 9$ $\Rightarrow 6y + y^2 = x^2$ $\Rightarrow (6 + 2y) \frac{dy}{dx} = 2x$	M1	Allow errors in RHS derivative (but not LHS) - notation should be correct
$\Rightarrow \frac{dy}{dx} = \frac{x}{y+3}$	E1	brackets must be used
or $y = \sqrt{x^2 + 9} - 3 \Rightarrow \frac{dy}{dx} = \frac{1}{2}(x^2 + 9)^{-1/2} \cdot 2x$ $= \frac{x}{\sqrt{x^2 + 9}} = \frac{x}{y + 3}$	M1 E1	(cao)
(iii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $= \frac{4}{2+3} \times 2$ $= \frac{8}{5}$	M1 A1 A1 [3]	chain rule (soi)

Mark Scheme

Section B

7(i) When $x = -1$, $y = -1\sqrt{0} = 0$ Domain $x \ge -1$	E1 B1 [2]	Not $y \ge -1$
(ii) $\frac{dy}{dx} = x \cdot \frac{1}{2} (1+x)^{-1/2} + (1+x)^{1/2}$	B1	$x \cdot \frac{1}{2}(1+x)^{-1/2}$
$= \frac{1}{2} (1+x)^{-1/2} [x+2(1+x)]$	B1 M1	$\dots + (1 + x)^{1/2}$ taking out common factor or common denominator
$=\frac{2+3x}{2\sqrt{1+x}} *$	E1	www
$or \ u = x + 1 \Rightarrow du/dx = 1$ $\Rightarrow y = (u - 1)u^{1/2} = u^{3/2} - u^{1/2}$ $\Rightarrow \frac{dy}{du} = \frac{3}{2}u^{\frac{1}{2}} - \frac{1}{2}u^{-\frac{1}{2}}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{3}{2}(x + 1)^{\frac{1}{2}} - \frac{1}{2}(x + 1)^{-\frac{1}{2}}$ $= \frac{1}{2}(x + 1)^{-\frac{1}{2}}(3x + 3 - 1)$	M1 A1 M1	taking out common factor or common denominator
$=\frac{2+3x}{2\sqrt{1+x}}*$	E1 [4]	
(iii) $dy/dx = 0$ when $3x + 2 = 0$ $\Rightarrow x = -2/3$ $\Rightarrow y = -\frac{2}{3}\sqrt{\frac{1}{3}}$ Range is $y \ge -\frac{2}{3}\sqrt{\frac{1}{3}}$	M1 A1ca o A1 B1 ft [4]	o.e. not $x \ge -\frac{2}{3}\sqrt{\frac{1}{3}}$ (ft their y value, even if approximate)
(iv) $\int_{-1}^{0} x \sqrt{1+x} dx$		
let $u = 1 + x$, $du/dx = 1 \Rightarrow du = dx$	M1	du = dx or $du/dx = 1$ or $dx/du = 1$
when $x = -1$, $u = 0$, when $x = 0$, $u = 1$	B1	changing limits – allow with no working shown provided limits
$=\int_0^1 (u-1)\sqrt{u}du$	M1	are present and consistent with dx and du. $(u-1)\sqrt{u}$
$= \int_0^1 (u^{3/2} - u^{1/2}) du^*$	E1	www – condone only final brackets missing, otherwise notation must be correct
$= \left[\frac{2}{5}u^{5/2} - \frac{2}{3}u^{3/2}\right]_{0}^{1}$ $= \pm \frac{4}{15}$	B1 B1 M1 A1ca o [8]	$\frac{2}{5}u^{5/2}, -\frac{2}{3}u^{3/2} \text{ (oe)}$ substituting correct limits (can imply the zero limit) $\pm \frac{4}{15}$ or ± 0.27 or better, not 0.26

8 (i) $f'(x) = 2(e^x - 1)e^x$ When $x = 0$, $f'(0) = 0$ When $x = \ln 2$, $f'(\ln 2) = 2(2 - 1)2$ = 4	M1 A1 B1dep M1 A1cao [5]	or $f(x) = e^{2x} - 2e^x + 1$ M1 (or $(e^x)^2 - 2e^x + 1$ plus correct deriv of $(e^x)^2$) $\Rightarrow f'(x) = 2e^{2x} - 2e^x$ A1 derivative must be correct, www $e^{\ln 2} = 2$ soi
(ii) $y = (e^x - 1)^2$ $x \leftrightarrow y$ $x = (e^y - 1)^2$	M1	reasonable attempt to invert formula
$ \Rightarrow \sqrt{x} = e^{y} - 1 \Rightarrow 1 + \sqrt{x} = e^{y} \Rightarrow y = \ln(1 + \sqrt{x}) $	M1 E1	taking lns similar scheme of inverting $y = \ln(1 + \sqrt{x})$
or $gf(x) = g((e^x - 1)^2)$ = $ln(1 + e^x - 1)$	M1 M1	constructing gf or fg $\ln(e^x) = x$ or $e^{\ln(1+\sqrt{x})} = 1 + \sqrt{x}$
= x	E1	
	B1	reflection in $y = x$ (must have infinite gradient at origin)
Gradient at $(1, \ln 2) = \frac{1}{4}$	B1ft [5]	
(iii) $\int (e^x - 1)^2 dx = \int (e^{2x} - 2e^x + 1) dx$ = $\frac{1}{2}e^{2x} - 2e^x + x + c^*$	M1 E1	expanding brackets (condone e^{x^2})
$\int_{0}^{\ln 2} (e^{x} - 1)^{2} dx = \left[\frac{1}{2}e^{2x} - 2e^{x} + x\right]_{0}^{\ln 2}$ = $\frac{1}{2}e^{2\ln 2} - 2e^{\ln 2} + \ln 2 - (\frac{1}{2} - 2)$ = $2 - 4 + \ln 2 - \frac{1}{2} + 2$ = $\ln 2 - \frac{1}{2}$	M1 M1 A1 [5]	substituting limits $e^{\ln 2} = 2$ used must be exact
(iv) $ \lim_{l \to 2} \frac{1}{1} $ Area = 1 × ln 2 - (ln 2 - 1/2) = 1/2	M1 B1 A1cao [3]	subtracting area in (iii) from rectangle rectangle area = $1 \times \ln 2$ must be supported

PMT

Mark Scheme 4753 June 2007

PMT

1 (i) $\frac{1}{2}(1+2x)^{-1/2} \times 2$ = $\frac{1}{\sqrt{1+2x}}$	M1 B1 A1 [3]	chain rule $\frac{1}{2} u^{-1/2}$ or $\frac{1}{2} (1 + 2x)^{-1/2}$ oe, but must resolve $\frac{1}{2} \times 2 = 1$
(ii) $y = \ln(1 - e^{-x})$ $\Rightarrow \frac{dy}{dx} = \frac{1}{1 - e^{-x}} \cdot (-e^{-x})(-1)$ $= \frac{e^{-x}}{1 - e^{-x}}$ $= \frac{1}{e^{x} - 1} *$	M1 B1 A1 E1 [4]	chain rule $\frac{1}{1-e^{-x}} \text{ or } \frac{1}{u} \text{ if substituting } u = 1-e^{-x}$ $\times (-e^{-x})(-1) \text{ or } e^{-x}$ www (may imply $\times e^{x}$ top and bottom)
2 $gf(x) = 1-x $ f gf 1 1 1 1 1 1 1 1 1 1 1 1 1	B1 B1 [3]	intercepts must be labelled line must extend either side of each axis condone no labels, but line must extend to left of <i>y</i> axis
3(i) Differentiating implicitly: $(4y+1)\frac{dy}{dx} = 18x$ $\Rightarrow \frac{dy}{dx} = \frac{18x}{4y+1}$ When $x = 1, y = 2, \frac{dy}{dx} = \frac{18}{9} = 2$	M1 A1 M1 A1cao [4]	$(4y+1)\frac{dy}{dx} = \dots$ allow $4y+1\frac{dy}{dx} = \dots$ condone omitted bracket if intention implied by following line. $4y\frac{dy}{dx}+1$ M1 A0 substituting $x = 1, y = 2$ into their derivative (provided it contains x's and y's). Allow unsupported answers.
(ii) $\frac{dy}{dx} = 0$ when $x = 0$ $\Rightarrow 2y^2 + y = 1$ $\Rightarrow 2y^2 + y - 1 = 0$ $\Rightarrow (2y - 1)(y + 1) = 0$ $\Rightarrow y = \frac{1}{2}$ or $y = -1$ So coords are $(0, \frac{1}{2})$ and $(0, -1)$	B1 M1 A1 A1 [4]	x = 0 from their numerator = 0 (must have a denominator) Obtaining correct quadratic and attempt to factorise or use quadratic formula $y = \frac{-1 \pm \sqrt{1-4 \times -2}}{4}$ cao allow unsupported answers provided quadratic is shown

4(i) $T = 25 + ae^{-kt}$. When $t = 0, T = 100$ $\Rightarrow 100 = 25 + ae^{0}$ $\Rightarrow a = 75$ When $t = 3, T = 80$ $\Rightarrow 80 = 25 + 75e^{-3k}$ $\Rightarrow e^{-3k} = 55/75$ $\Rightarrow -3k = \ln (55/75), k = -\ln (55/75) / 3$ = 0.1034 (ii) (A) $T = 25 + 75e^{-0.1034 \times 5}$	M1 A1 M1 A1cao [5] M1	substituting $t = 0$ and $T = 100$ into their equation (even if this is an incorrect version of the given equation) substituting $t = 3$ and $T = 80$ into (their) equation taking lns correctly at any stage 0.1 or better or $-\frac{1}{3}\ln(\frac{55}{75})$ o.e. if final answer substituting $t = 5$ into their equation
= 69.72 (B) 25°C	A1 B1cao [3]	69.5 to 70.5, condone inaccurate rounding due to value of <i>k</i> .
5 $n = 1, n^2 + 3n + 1 = 5$ prime $n = 2, n^2 + 3n + 1 = 11$ prime $n = 3, n^2 + 3n + 1 = 19$ prime $n = 4, n^2 + 3n + 1 = 29$ prime $n = 5, n^2 + 3n + 1 = 41$ prime	M1	One or more trials shown
$n = 6, n^2 + 3n + 1 = 55$ not prime so statement is false	E1 [2]	finding a counter-example – must state that it is not prime.
6 (i) $-\pi/2 < \arctan x < \pi/2$ $\Rightarrow -\pi/4 < f(x) < \pi/4$ $\Rightarrow \text{ range is } -\pi/4 \text{ to } \pi/4$	M1 A1cao [2]	$\pi/4 \text{ or } -\pi/4 \text{ or } 45 \text{ seen}$ not \leq
(ii) $y = \frac{1}{2} \arctan x$ $x \leftrightarrow y$ $x = \frac{1}{2} \arctan y$ $\Rightarrow 2x = \arctan y$ $\Rightarrow \tan 2x = y$ $\Rightarrow y = \tan 2x$	M1 A1cao	$\tan(\arctan y \text{ or } x) = y \text{ or } x$
$\Rightarrow y = \tan 2x$ either $\frac{dy}{dx} = 2 \sec^2 2x$	M1 A1cao	derivative of tan is sec ² used
$or \ y = \frac{\sin 2x}{\cos 2x} \Rightarrow \frac{dy}{dx} = \frac{2\cos^2 2x + 2\sin^2 2x}{\cos^2 2x}$	M1	quotient rule
$=\frac{2}{\cos^2 2x}$	A1cao	(need not be simplified but mark final answer)
When $x = 0$, $dy/dx = 2$	B1 [5]	www
(iii) So gradient of $y = \frac{1}{2} \arctan x$ is $\frac{1}{2}$.	B1ft [1]	ft their '2', but not 1 or 0 or ∞

7(i) Asymptote when $1 + 2x^3 = 0$ $\Rightarrow 2x^3 = -1$ $\Rightarrow x = -\frac{1}{\sqrt[3]{2}}$ = -0.794	M1 A1 A1cao [3]	oe, condone $\pm \frac{1}{\sqrt[3]{2}}$ if positive root is rejected must be to 3 s.f.
(ii) $\frac{dy}{dx} = \frac{(1+2x^3).2x - x^2.6x^2}{(1+2x^3)^2}$ $= \frac{2x + 4x^4 - 6x^4}{(1+2x^3)^2}$ $= \frac{2x - 2x^4}{(1+2x^3)^2} *$ $dy/dx = 0 \text{ when } 2x(1-x^3) = 0$ $\Rightarrow x = 0, y = 0$ or $x = 1, y = 1/3$	M1 A1 E1 M1 B1 B1 B1 B1 [8]	Quotient or product rule: $(udv-vdu \ M0)$ $2x(1+2x^3)^{-1} + x^2(-1)(1+2x^3)^{-2}.6x^2$ allow one slip on derivatives correct expression – condone missing bracket if if intention implied by following line derivative = 0 x = 0 or 1 – allow unsupported answers y = 0 and 1/3 SC–1 for setting denom = 0 or extra solutions (e.g. $x = -1$)
(iii) $A = \int_{0}^{1} \frac{x^{2}}{1+2x^{3}} dx$ either $= \left[\frac{1}{6}\ln(1+2x^{3})\right]_{0}^{1}$ $= \frac{1}{6}\ln 3^{*}$	M1 M1 A1 M1 E1	Correct integral and limits – allow $\int_{1}^{0} \frac{k \ln(1+2x^3)}{k=1/6}$ substituting limits dep previous M1 www
$= \frac{1}{6} \ln 3^*$ or let $u = 1 + 2x^3 \Rightarrow du = 6x^2 dx$ $\Rightarrow A = \int_1^3 \frac{1}{6} \cdot \frac{1}{u} du$ $= \left[\frac{1}{6} \ln u\right]_1^3$ $= \frac{1}{6} \ln 3^*$	M1 A1 M1 E1 [5]	$\frac{1}{6u}$ $\frac{1}{6}\ln u$ substituting correct limits (but must have used substitution) www

M1 M1 A1 [3]	$\cos 2x = 0$ or $x = \frac{1}{2} \cos^{-1} 0$ x = 0.785 or 45 is M1 M1 A0
M1 E1 B1 [3]	$-x \cos(-2x)$ = $-x \cos 2x$ Must have two of: rotational, order 2, about O, (half turn = rotational order 2)
M1 A1 [2]	product rule
M1 E1 [2]	$\frac{\sin}{\cos} = \tan$ www
B1ft M1 A1 E1 [4]	allow ft on (their) product rule expression product rule on (2) $x \sin 2x$ correct expression – mark final expression www
M1 A1 A1 M1 A1 B1 [6]	Integration by parts with $u = x$, $dv/dx = cos2x$ $\left[\frac{1}{4}cos2x\right]$ - sign consistent with their previous line substituting limits – dep using parts www or graph showing correct area – condone P for $\pi/4$.
	M1 A1 [3] M1 E1 B1 [3] M1 A1 [2] M1 E1 [2] B1ft M1 A1 E1 [4] M1 A1 A1 A1 A1 A1 A1 B1

January 2008

4753 (C3) Methods for Advanced Mathematics

1 $y = (1+6x^2)^{1/3}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{3}(1+6x^2)^{-2/3}.12x$	M1 B1	chain rule used $\frac{1}{3}u^{-2/3}$
$=4x(1+6x^2)^{-2/3}$	A1 A1 [4]	$\times 12x$ cao (must resolve 1/3 \times 12) Mark final answer
2 (i) $fg(x) = f(x-2)$ = $(x-2)^2$ $gf(x) = g(x^2) = x^2 - 2.$	M1 A1 A1 [3]	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii) , fg(x)	B1ft B1ft	fg – must have (2, 0)labelled (or inferable from scale). Condone no <i>y</i> -intercept, unless wrong gf – must have (0, –2) labelled (or inferable from scale) Condone no x-intercepts, unless wrong
	[2]	Allow ft only if fg and gf are correct but wrong way round.
3 (i) When $n = 1$, 10 000 = $A e^{b}$ when $n = 2$, 16 000 = $A e^{2b}$ $\Rightarrow \frac{16000}{10000} = \frac{Ae^{2b}}{Ae^{b}} = e^{b}$	B1 B1 M1	soi soi eliminating A (do not allow verification)
$\begin{array}{ll} \Rightarrow & e^{b} = 1.6\\ \Rightarrow & b = \ln 1.6 = 0.470\\ & A = 10000/1.6 = 6250. \end{array}$	E1 B1 B1 [6]	SCB2 if initial 'B's are missing, and ratio of years = 1.6 = e^{b} In 1.6 or 0.47 or better (mark final answer) cao – allow recovery from inexact <i>b</i> 's
(ii) When $n = 20$, $P = 6250 \times e^{0.470 \times 20}$ = £75,550,000	M1 A1 [2]	substituting $n = 20$ into their equation with their A and b Allow answers from £75 000 000 to £76 000 000.
4 (i) $5 = k/100 \Rightarrow k = 500^*$	E1 [1]	NB answer given
(ii) $\frac{dP}{dV} = -500V^{-2} = -\frac{500}{V^2}$	M1 A1 [2]	$(-1)V^{-2}$ o.e. – allow – k/V^2
(iii) $\frac{dP}{dt} = \frac{dP}{dV} \cdot \frac{dV}{dt}$	M1	chain rule (any correct version)
When $V = 100$, $dP/dV = -500/10000 =$ -0.05 dV/dt = 10 $\Rightarrow dP/dt = -0.05 \times 10 = -0.5$ So P is decreasing at 0.5 Atm/s	B1ft B1 A1 [4]	(soi) (soi) –0.5 cao

5(i)	$p = 2, 2^{p} - 1 = 3$, prime $p = 3, 2^{p} - 1 = 7$, prime $p = 5, 2^{p} - 1 = 31$, prime $p = 7, 2^{p} - 1 = 127$, prime	M1 E1 [2]	Testing at least one prime testing all 4 primes (correctly) Must comment on answers being prime (allow ticks) Testing $p = 1$ is E0
(ii)	$23 \times 89 = 2047 = 2^{11} - 1$ 11 is prime, 2047 is not So statement is false.	M1 E1 [2]	$2^{11} - 1$ must state or imply that 11 is prime (<i>p</i> = 11 is sufficient)
\Rightarrow	$e^{2y} = x^{2} + y$ $2e^{2y} \frac{dy}{dx} = 2x + \frac{dy}{dx}$ $(2e^{2y} - 1)\frac{dy}{dx} = 2x$ $\frac{dy}{dx} = \frac{2x}{2e^{2y} - 1} *$	M1 A1 M1 E1 [4]	Implicit differentiation – allow one slip (but with dy/dx both sides) collecting terms
$\begin{array}{c} 0 \\ \Rightarrow \\ \Rightarrow \end{array}$	Gradient is infinite when $2e^{2y} - 1 =$ $e^{2y} = \frac{1}{2}$ $2y = \ln \frac{1}{2}$ $y = \frac{1}{2} \ln \frac{1}{2} = -0.347 (3 \text{ s.f.})$ $x^2 = e^{2y} - y = \frac{1}{2} - (-0.347)$ = 0.8465 x = 0.920	M1 A1 M1 A1 [4]	must be to 3 s.f. substituting their y and solving for x cao – must be to 3 s.f., but penalise accuracy once only.

7(i) $y = 2x \ln(1 + x)$ $\Rightarrow \frac{dy}{dx} = \frac{2x}{1+x} + 2\ln(1+x)$ When $x = 0$, $dy/dx = 0 + 2 \ln 1 = 0$ \Rightarrow origin is a stationary point.	M1 B1 A1 E1 [4]	product rule d/dx(ln(1+x)) = 1/(1+x) soi www (i.e. from correct derivative)
(ii) $\frac{d^2 y}{dx^2} = \frac{(1+x) \cdot 2 - 2x \cdot 1}{(1+x)^2} + \frac{2}{1+x}$ $= \frac{2}{(1+x)^2} + \frac{2}{1+x}$ When $x = 0$, $\frac{d^2 y}{dx^2} = 2 + 2 = 4 > 0$ \Rightarrow (0, 0) is a min point	M1 A1ft A1 M1 E1 [5]	Quotient or product rule on their $2x/(1 + x)$ correctly applied to their $2x/(1+x)$ o.e., e.g. $\frac{4+2x}{(1+x)^2}$ cao substituting $x = 0$ into their d^2y/dx^2 www – dep previous A1
(iii) Let $u = 1 + x \Rightarrow du = dx$ $\Rightarrow \int \frac{x^2}{1+x} dx = \int \frac{(u-1)^2}{u} du$ $= \int \frac{(u^2 - 2u + 1)}{u} du$	M1	$\frac{(u-1)^2}{u}$
$= \int (u - 2 + \frac{1}{u}) du ^{*}$ $\Rightarrow \int_{0}^{1} \frac{x^{2}}{1 + x} dx = \int_{1}^{2} (u - 2 + \frac{1}{u}) du$ $= \left[\frac{1}{2}u^{2} - 2u + \ln u\right]_{1}^{2}$ $= 2 - 4 + \ln 2 - (\frac{1}{2}u - 2 + \ln 1)$ $= \ln 2 - \frac{1}{2}$	E1 B1 B1 M1 A1	www (but condone du omitted except in final answer) changing limits (or substituting back for x and using 0 and 1) $\left[\frac{1}{2}u^2 - 2u + \ln u\right]$ substituting limits (consistent with u or x) cao
(iv) $A = \int_{0}^{1} 2x \ln(1+x) dx$ Parts: $u = \ln(1+x), du/dx = 1/(1+x)$	M1 [6]	soi
$dv/dx = 2x \implies v = x^{2}$ $= \left[x^{2}\ln(1+x)\right]_{0}^{1} - \int_{0}^{1} \frac{x^{2}}{1+x} dx$ $= \ln 2 - \ln 2 + \frac{1}{2} = \frac{1}{2}$	A1 M1 A1 [4]	substituting their $\ln 2 - \frac{1}{2}$ for $\int_0^1 \frac{x^2}{1+x} dx$ cao

Mark

3	rk Sch	eme January 2008
	M1 A1 M1 A1 [4]	(in either order) – allow 'contraction' dep 'stretch' allow 'move', 'shift', etc – direction can be inferred from $\begin{pmatrix} 0\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0\\1 \end{pmatrix}$ alone is M1 A0
	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
	M1	differentiating – allow 1 error (but not $x + 2\cos 2x$)

PMT

	[4]	or $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ dep 'translation'. $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ alone is M1 A0
(ii) $A = \int_{-\pi/4}^{\pi/4} (1 + \sin 2x) dx$ $= \left[x - \frac{1}{2} \cos 2x \right]_{-\pi/4}^{\pi/4}$ $= \pi/4 - \frac{1}{2} \cos \frac{\pi}{2} + \frac{\pi}{4} + \frac{1}{2} \cos \frac{(-\pi/2)}{2}$ $= \pi/2$	M1 B1 M1 A1 [4]	correct integral and limits. Condone dx missing; limits may be implied from subsequent working. substituting their limits (if zero lower limit used, must show evidence of substitution) or 1.57 or better – cao (www)
(iii) $y = 1 + \sin 2x$ $\Rightarrow dy/dx = 2\cos 2x$ When $x = 0$, $dy/dx = 2$	M1 A1	differentiating – allow 1 error (but not $x + 2\cos 2x$)
So gradient at (0, 1) on $f(x)$ is 2 \Rightarrow gradient at (1, 0) on $f^{-1}(x) = \frac{1}{2}$	A1ft B1ft [4]	If 1, then must show evidence of using reciprocal, e.g. 1/1
(iv) Domain is $0 \le x \le 2$.	B1	Allow 0 to 2, but not $0 < x < 2$ or y instead of x
$\begin{array}{c c} & 2^{-1} \\ \hline & & \\ \hline \\ \hline$	M1 A1	clear attempt to reflect in $y = x$ correct domain indicated (0 to 2), and reasonable shape
	[3]	
(v) $y = 1 + \sin 2x \ x \leftrightarrow y$ $x = 1 + \sin 2y$ $\Rightarrow \sin 2y = x - 1$	M1	or $\sin 2x = y - 1$
$ \Rightarrow 2y = \arcsin(x-1) \Rightarrow y = \frac{1}{2} \arcsin(x-1) $	A1 [2]	сао

8 (i) Stretch in *x*-direction

translation in y-direction

s.f. ½

1 unit up

4753 (C3) Methods for Advanced Mathematics

		1	
	$ 2x-1 \le 3$ -3 \le 2x - 1 \le 3 -2 \le 2x \le 4 -1 \le x \le 2 $(2x-1)^2 \le 9$ $4x^2 - 4x - 8 \le 0$ $(4)(x+1)(x-2) \le 0$ -1 \le x \le 2	M1 A1 M1 A1 M1 A1 A1 A1 [4]	$2x - 1 \le 3 \text{ (or =)}$ $x \le 2$ $2x - 1 \ge -3 \text{ (or =)}$ $x \ge -1$ squaring and forming quadratic = 0 (or \le) factorising or solving to get $x = -1, 2$ $x \ge -1$ $x \ge -1$ $x \ge -1$ $x \ge -1$
2 ⇒	Let $u = x$, $dv/dx = e^{3x} \implies v = e^{3x}/3$ $\int x e^{3x} dx = \frac{1}{3} x e^{3x} - \int \frac{1}{3} e^{3x} \cdot 1 \cdot dx$ $= \frac{1}{3} x e^{3x} - \frac{1}{9} e^{3x} + c$	M1 A1 A1 B1 [4]	parts with $u = x$, $dv/dx = e^{3x} \Rightarrow v$ = $\frac{1}{3}xe^{3x} - \frac{1}{9}e^{3x}$ + c
3 (i)	f(-x) = f(x) Symmetrical about Oy.	B1 B1 [2]	
(ii)	(A) even(B) neither(C) odd	B1 B1 B1 [3]	
4	Let $u = x^2 + 2 \Rightarrow du = 2x dx$ $\int_1^4 \frac{x}{x^2 + 2} dx = \int_3^{18} \frac{1/2}{u} du$ $= \frac{1}{2} [\ln u]_3^{18}$ $= \frac{1}{2} (\ln 18 - \ln 3)$ $= \frac{1}{2} \ln (18/3)$ $= \frac{1}{2} \ln 6^*$	M1 A1 M1 E1 [4]	$\int \frac{1/2}{u} du \text{ or } k \ln (x^2 + 1)$ ¹ / ₂ ln <i>u</i> or ¹ / ₂ ln(x ² + 2) substituting correct limits (<i>u</i> or <i>x</i>) must show working for ln 6
$5 \\ \Rightarrow \\ dy/dx \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow$	$y = x^{2} \ln x$ $\frac{dy}{dx} = x^{2} \cdot \frac{1}{x} + 2x \ln x$ $= x + 2x \ln x$ $= 0 \text{ when } x + 2x \ln x = 0$ $x(1 + 2\ln x) = 0$ $\ln x = -\frac{1}{2}$ $x = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} *$	M1 B1 A1 M1 E1 [6]	product rule $d/dx (\ln x) = 1/x$ soi oe their deriv = 0 or attempt to verify $\ln x = -\frac{1}{2} \Longrightarrow x = e^{-\frac{1}{2}}$ or $\ln (1/\sqrt{e}) = -\frac{1}{2}$

PMT

6(i) Initial mass = $20 + 30 e^0 = 50$ grams Long term mass = 20 grams	M1A1 B1 [3]	
(ii) $30 = 20 + 30 e^{-0.1t}$ $\Rightarrow e^{-0.1t} = 1/3$ $\Rightarrow -0.1t = \ln (1/3) = -1.0986$ $\Rightarrow t = 11.0 \text{ mins}$	M1 M1 A1 [3]	anti-logging correctly 11, 11.0, 10.99, 10.986 (not more than 3 d.p)
(iii) m_{50} 20 $$	B1 B1 [2]	correct shape through $(0, 50)$ – ignore negative values of t $\rightarrow 20$ as $t \rightarrow \infty$
7 $x^{2} + xy + y^{2} = 12$ $\Rightarrow 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ $\Rightarrow (x + 2y)\frac{dy}{dx} = -2x - y$ $\Rightarrow \frac{dy}{dx} = -\frac{2x + y}{(x + 2y)}$	M1 B1 A1 M1 A1 [5]	Implicit differentiation $x \frac{dy}{dx} + y$ correct equation collecting terms in dy/dx and factorising oe cao

Section B

8(i) $y = 1/(1 + \cos \pi/3) = 2/3.$	B1 [1]	or 0.67 or better
(ii) $f'(x) = -1(1 + \cos x)^{-2} - \sin x$ $= \frac{\sin x}{(1 + \cos x)^2}$ When $x = \pi/3$, $f'(x) = \frac{\sin(\pi/3)}{(1 + \cos(\pi/3))^2}$ $= \frac{\sqrt{3}/2}{(1\frac{1}{2})^2} = \frac{\sqrt{3}}{2} \times \frac{4}{9} = \frac{2\sqrt{3}}{9}$	M1 B1 A1 M1 A1 [5]	chain rule or quotient rule $d/dx (\cos x) = -\sin x \text{ soi}$ correct expression substituting $x = \pi/3$ oe or 0.38 or better. (0.385, 0.3849)
(iii) deriv = $\frac{(1 + \cos x)\cos x - \sin x.(-\sin x)}{(1 + \cos x)^2}$ = $\frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}$	M1 A1	Quotient or product rule – condone uv' – u'v for M1 correct expression
$=\frac{\cos x+1}{\left(1+\cos x\right)^2}$	M1dep	$\cos^2 x + \sin^2 x = 1$ used dep M1
$= \frac{1}{1 + \cos x} *$ Area $= \int_{0}^{\pi/3} \frac{1}{1 + \cos x} dx$ $= \left[\frac{\sin x}{1 + \cos x} \right]_{0}^{\pi/3}$ $= \frac{\sin \pi/3}{1 + \cos \pi/3} (-0)$ $= \frac{\sqrt{3}}{2} \times \frac{2}{3} = \frac{\sqrt{3}}{3}$	E1 B1 M1 A1 cao	www substituting limits or $1/\sqrt{3}$ - must be exact
2 3 3	[7]	
(iv) $y = 1/(1 + \cos x)$ $x \leftrightarrow y$ $x = 1/(1 + \cos y)$ $\Rightarrow 1 + \cos y = 1/x$	M1	attempt to invert equation
$ \Rightarrow \cos y = 1/x - 1 \Rightarrow y = \arccos(1/x - 1) * $	A1 E1	www
Domain is $\frac{1}{2} \le x \le 1$	B1	
	B1	reasonable reflection in $y = x$
	[5]	

4753

9 (i) $y = \sqrt{4 - x^2}$ $\Rightarrow y^2 = 4 - x^2$ $\Rightarrow x^2 + y^2 = 4$ which is equation of a circle centre O radius 2 Square root does not give negative values, so this is only a semi-circle.	M1 A1 B1 [3]	squaring $x^{2} + y^{2} = 4 + \text{comment (correct)}$ oe, e.g. f is a function and therefore single valued
(ii) (A) Grad of OP = b/a \Rightarrow grad of tangent = $-\frac{a}{b}$	M1 A1	
(B) $f'(x) = \frac{1}{2}(4-x^2)^{-1/2}.(-2x)$ = $-\frac{x}{2}$	M1 A1	chain rule or implicit differentiation
$= -\frac{x}{\sqrt{4 - x^2}}$ $\Rightarrow f'(a) = -\frac{a}{\sqrt{4 - a^2}}$ $(C) b = \sqrt{(4 - a^2)}$	B1	substituting <i>a</i> into their $f'(x)$
so f'(a) = $-\frac{a}{b}$ as before	E1 [6]	
(iii) Translation through $\begin{pmatrix} 2\\ 0 \end{pmatrix}$ followed by	M1 A1	Translation in <i>x</i> -direction through $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ or 2 to right ('shift', 'move' M1 A0) $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ alone is SC1
stretch scale factor 3 in y-direction $ \begin{array}{c c} 6 \\ \hline 4 \\ \hline 4 \end{array} $	M1 A1 M1 A1 [6]	 (0) stretch in y-direction (condone y 'axis') (scale) factor 3 elliptical (or circular) shape through (0, 0) and (4, 0) and (2, 6) (soi) -1 if whole ellipse shown
(iv) $y = 3f(x-2)$ $= 3\sqrt{(4 - (x-2)^2)}$ $= 3\sqrt{(4 - x^2 + 4x - 4)}$ $= 3\sqrt{(4x - x^2)}$ $\Rightarrow y^2 = 9(4x - x^2)$ $\Rightarrow 9x^2 + y^2 = 36x *$	M1 A1 E1 [3]	or substituting $3\sqrt{(4 - (x - 2)^2)}$ oe for y in $9x^2 + y^2$ $4x - x^2$ www

4753 (C3) Methods for Advanced Mathematics

$1 x-1 < 3 \Rightarrow -3 < x-1 < 3$ $\Rightarrow -2 < x < 4$	M1	or $x - 1 = \pm 3$, or squaring \Rightarrow correct quadratic \Rightarrow (x + 2)(x - 4) (condone factorising errors) or correct sketch showing $y = 3$ to scale
	A1	-2 <
	B1 [3]	< 4 (penalise \leq once only)
$2(i) \qquad y = x \cos 2x$	M1	product rule
$\Rightarrow \frac{dy}{dx} = -2x\sin 2x + \cos 2x$	B1 A1	$\frac{d}{dx} (\cos 2x) = -2\sin 2x$ oe cao
	[3]	
(ii) $\int x \cos 2x dx = \int x \frac{d}{dx} (\frac{1}{2} \sin 2x) dx$	M1	parts with $u = x$, $v = \frac{1}{2} \sin 2x$
$=\frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx$	A1	
	A1 A1ft	$+\frac{1}{4}\cos 2x$
$=\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$	A 1	
	A1 [4]	cao - must have + c
3 Either $y = \frac{1}{2}\ln(x-1)$ $x \leftrightarrow y$		or $y = e^{(x-1)/2}$
	M1	attempt to invert and interchanging x with y o.e.
$\Rightarrow \qquad x = \frac{1}{2} \ln(y-1)$	M1	(at any stage)
$\Rightarrow 2x = \ln(y-1)$	M1	$e^{\ln y - 1} = y - 1$ or $\ln (e^y) = y$ used
$ \Rightarrow 2x = \ln (y - 1) \Rightarrow e^{2x} = y - 1 \Rightarrow 1 + e^{2x} = y $	E1	
$\Rightarrow g(x) = 1 + e^{2x}$	E1	www
or $gf(x) = g(\frac{1}{2} \ln (x - 1))$ = 1 + e ^{ln(x - 1)}	M1	or $fg(x) = \dots$ (correct way round)
= 1 + e = 1 + x - 1	M1	$e^{\ln(x-1)} = x - 1$ or $\ln(e^{2x}) = 2x$
= x	E1 [3]	www
4 $\int_{0}^{2} \sqrt{1+4x} dx$ let $u = 1+4x$, $du = 4dx$	M1	u = 1 + 4x and $du/dx = 4$ or $du = 4dx$
$=\int_{1}^{9}u^{1/2}\cdot\frac{1}{4}du$	A1	$\int u^{1/2} \cdot \frac{1}{4} du$
$= \begin{bmatrix} \frac{1}{6} u^{3/2} \end{bmatrix}_{1}^{9}$	B1	$\int u^{1/2} du = \frac{u^{3/2}}{3/2} \text{ soi}$
	M1	substituting correct limits (u or x) dep attempt to
$=\frac{27}{6}-\frac{1}{6}=\frac{26}{6}=\frac{13}{3}$ or $4\frac{1}{3}$	A1cao	integrate
or $\frac{d}{dx}(1+4x)^{3/2} = 4 \cdot \frac{3}{2}(1+4x)^{1/2} = 6(1+4x)^{1/2}$	M1	$k(1+4x)^{3/2}$
	A1	$\int (1+4x)^{1/2} dx = \frac{2}{3} (1+4x)^{3/2} \dots$
$\Rightarrow \int_{0}^{2} (1+4x)^{1/2} dx = \left[\frac{1}{6} (1+4x)^{3/2}\right]_{0}^{2}$	A1	\times $5 \times 1/4$
$=\frac{27}{6}-\frac{1}{6}=\frac{26}{6}=\frac{13}{3} \text{ or } 4\frac{1}{3}$	M1	substituting limits (dep attempt to integrate)
	Alcao	
	[5]	

January 2009

5(i) period 180°	B1 [1]	condone $0 \le x \le 180^\circ$ or π
(ii) one-way stretch in <i>x</i> -direction scale factor $\frac{1}{2}$ translation in <i>y</i> -direction through $\begin{pmatrix} 0\\1 \end{pmatrix}$	M1 A1 M1 A1 [4]	[either way round] condone 'squeeze', 'contract' for M1 stretch used and s.f $\frac{1}{2}$ condone 'move', 'shift', etc for M1 'translation' used, +1 unit $\begin{pmatrix} 0\\1 \end{pmatrix}$ only is M1 A0
	M1 B1	correct shape, touching <i>x</i> -axis at -90°, 90° correct domain
	A1	(0, 2) marked or indicated (i.e. amplitude is 2)
-180 180	[3]	
6(i) e.g $p = 1$ and $q = -2$	M1	stating values of p , q with $p \ge 0$ and $q \le 0$ (but not $p = q = 0$)
$p > q$ but $1/p = 1 > 1/q = -\frac{1}{2}$	E1 [2]	showing that $1/p > 1/q$ - if 0 used, must state that $1/0$ is undefined or infinite
(ii) Both p and q positive (or negative)	B1 [1]	or $q > 0$, 'positive integers'
7(i) $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$	M1 A1	Implicit differentiation (must show = 0)
7(i) $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{\frac{2}{3}x^{-1/3}}{\frac{2}{3}y^{-1/3}}$	M1	solving for dy/dx
$= -\frac{y^{1/3}}{x^{1/3}} = -\left(\frac{y}{x}\right)^{\frac{1}{3}} *$	E1 [4]	www. Must show, or explain, one more step.
(ii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$	M1	any correct form of chain rule
$= -\left(\frac{8}{1}\right)^{\frac{1}{3}}.6$	A1	
=-12	A1cao [3]	

4753

8(i) When $x = 1$ $y = 1^2 - (\ln 1)/8 = 1$ Gradient of PR = $(1 + 7/8)/1 = 1\frac{7}{8}$	B1 M1 A1 [3]	1.9 or better
(ii) $\frac{dy}{dx} = 2x - \frac{1}{8x}$ When $x = 1$, $\frac{dy}{dx} = 2 - \frac{1}{8} = \frac{1}{8}$ Same as gradient of PR, so PR touches curve	B1 B1dep E1 [3]	cao 1.9 or better dep 1 st B1 dep gradients exact
(iii) Turning points when $dy/dx = 0$ $\Rightarrow 2x - \frac{1}{8x} = 0$ $\Rightarrow 2x = \frac{1}{8x}$	M1	setting their derivative to zero
$\Rightarrow 2x = \frac{1}{8x} \Rightarrow x^2 = 1/16 \Rightarrow x = \frac{1}{4} (x > 0) When x = \frac{1}{4}, y = \frac{1}{16} - \frac{1}{8} \ln \frac{1}{4} = \frac{1}{16} + \frac{1}{8} \ln 4 So TP is (\frac{1}{4}, \frac{1}{16} + \frac{1}{8} \ln 4)$	M1 A1 M1 A1cao [5]	multiplying through by x allow verification substituting for x in y o.e. but must be exact, not $1/4^2$. Mark final answer.
(iv) $\frac{d}{dx}(x \ln x - x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$	M1 A1	product rule ln <i>x</i>
Area = $\int_{1}^{2} (x^{2} - \frac{1}{8} \ln x) dx$ = $\left[\frac{1}{3} x^{3} - \frac{1}{8} (x \ln x - x) \right]_{1}^{2}$ = $(\frac{8}{3} - \frac{1}{4} \ln 2 + \frac{1}{4}) - (\frac{1}{3} - \frac{1}{8} \ln 1 + \frac{1}{8})$ = $\frac{7}{3} + \frac{1}{8} - \frac{1}{4} \ln 2$ = $\frac{59}{24} - \frac{1}{4} \ln 2$ *	M1 M1 A1 M1 E1 [7]	correct integral and limits (soi) – condone no dx $\int \ln x dx = x \ln x - x \text{ used (or derived using integration by parts)}$ $\frac{1}{3}x^3 - \frac{1}{8}(x \ln x - x) - \text{bracket required substituting correct limits}$ must show at least one step

9(i) Asymptotes when $()(2x - x^2) = 0$ $\Rightarrow x(2 - x) = 0$ $\Rightarrow x = 0 \text{ or } 2$ so a = 2 Domain is $0 < x < 2$	M1 A1 B1ft [3]	or by verification $x > 0$ and $x < 2$, not \leq
(ii) $y = (2x - x^2)^{-1/2}$ let $u = 2x - x^2$, $y = u^{-1/2}$ $\Rightarrow dy/du = -\frac{1}{2}u^{-3/2}$, $du/dx = 2 - 2x$ \Rightarrow $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2}(2x - x^2)^{-3/2} \cdot (2 - 2x)$ $= \frac{x - 1}{(2x - x^2)^{3/2}} *$	M1 B1 A1 E1	chain rule (or within correct quotient rule) $-\frac{1}{2}u^{-3/2}$ or $-\frac{1}{2}(2x-x^2)^{-3/2}$ or $\frac{1}{2}(2x-x^2)^{-1/2}$ in quotient rule $\times (2-2x)$ www – penalise missing brackets here
$dy/dx = 0 \text{ when } x - 1 = 0$ $\Rightarrow x = 1, \\ y = 1/\sqrt{2 - 1} = 1$ Range is $y \ge 1$	M1 A1 B1 B1ft [8]	extraneous solutions M0
(iii) (A) $g(-x) = \frac{1}{\sqrt{1 - (-x)^2}} = \frac{1}{\sqrt{1 - x^2}} = g(x)$	M1 E1	Expression for $g(-x)$ – must have $g(-x) = g(x)$ seen
$(B) \ g(x-1) = \frac{1}{\sqrt{1 - (x-1)^2}}$ $= \frac{1}{\sqrt{1 - x^2 + 2x - 1}} = \frac{1}{\sqrt{2x - x^2}} = f(x)$	M1 E1	must expand bracket
(<i>C</i>) $f(x)$ is $g(x)$ translated 1 unit to the right. But $g(x)$ is symmetrical about Oy So $f(x)$ is symmetrical about $x = 1$.	M1 M1 A1	dep both M1s
or $f(1-x) = g(-x)$, $f(1+x) = g(x)$	M1	or $f(1-x) = \frac{1}{\sqrt{2-2x-(1-x)^2}} = \frac{1}{\sqrt{2-2x-1+2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$ $f(1+x) = \frac{1}{\sqrt{2+2x-(1+x)^2}} = \frac{1}{\sqrt{2+2x-1-2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$
$\Rightarrow f(1+x) = f(1-x)$ $\Rightarrow f(x) \text{ is symmetrical about } x = 1.$	E1 A1 [7]	$\sqrt{2+2x-(1+x)^2}$ $\sqrt{2+2x-1-2x-x^2}$ $\sqrt{1-x^2}$

4753 (C3) Methods for Advanced Mathematics

Section A

1	$\int_{0}^{\pi/6} \sin 3x \mathrm{d} x = \left[-\frac{1}{3} \cos 3x \right]_{0}^{\frac{\pi}{6}}$	B1	$\left[-\frac{1}{3}\cos 3x\right] \text{ or } \left[-\frac{1}{3}\cos u\right]$
	$=-\frac{1}{3}\cos\frac{\pi}{2}+\frac{1}{3}\cos 0$	M1	substituting correct limits in $\pm k \cos \dots$
	$=\frac{1}{3}$	A1cao [3]	0.33 or better.
2(i)	$100 = Ae^0 = A \Longrightarrow A = 100$	M1A1	
	$50 = 100 e^{-1500k}$ $e^{-1500k} = 0.5$	M1	$50 = A e^{-1500k}$ ft their 'A' if used
$$ $$	$-1500k = \ln 0.5$ k = -\ln 0.5 / 1500 = 4.62 × 10 ⁻⁴	M1 A1 [5]	taking lns correctly 0.00046 or better
$ \begin{array}{c} \textbf{(ii)} \\ \Rightarrow \\ \Rightarrow \end{array} \end{array} $	$1 = 100e^{-kt} -kt = \ln 0.01 t = -\ln 0.01 /k = 9966 years$	M1 M1 A1 [3]	ft their A and k taking lns correctly art 9970
3	2π-	M1 B1	Can use degrees or radians reasonable shape (condone extra range) passes through (-1, 2π), (0, π) and (1, 0)
_	$\frac{1}{1}$ $\frac{1}{1}$	A1 [3]	good sketches – look for curve reasonably vertical at $(-1, 2\pi)$ and $(1, 0)$, negative gradient at $(0, \pi)$. Domain and range must be clearly marked and correct.
4 ⇒	g(x) = 2 x-1 b = 2 0-1 = 2 or (0, 2)	B1	Allow unsupported answers. www
\Rightarrow	2 x-1 =0 x = 1, so a = 1 or (1, 0)	M1 A1 [3]	x = 1 is A0 www

Mark Scheme

PMT

\Rightarrow	$e^{2y} = 1 + \sin x$ $2e^{2y} dy/dx = \cos x$	M1 B1	Their $2e^{2y} \times dy/dx$ $2e^{2y}$
⇒	$dy/dx = \frac{\cos x}{2e^{2y}}$	A1 [3]	o.e. cao
(ii) ⇒ ⇒	$2y = \ln(1 + \sin x)$ $y = \frac{1}{2} \ln(1 + \sin x)$ $dy/dx = \frac{1}{2} \frac{\cos x}{1 + \sin x}$ $= \frac{\cos x}{2e^{2y}} \text{ as before}$	B1 M1 B1 E1 [4]	chain rule (can be within 'correct' quotient rule with $dv/dx = 0$) $1/u$ or $1/(1 + \sin x)$ soi www
6	$f f(x) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1}$	M1	correct expression
	$=\frac{x+1+x-1}{x+1-x+1}$	M1	without subsidiary denominators e.g. $= \frac{x+1+x-1}{x-1} \times \frac{x-1}{x+1-x+1}$
	x+1-x+1 = 2x/2 = x*	E1	x-1 $x+1-x+1$
	$\mathbf{f}^{-1}(x) = \mathbf{f}(x)$	B1	stated, or shown by inverting
	Symmetrical about $y = x$.	B1 [5]	
7(i)	$(A) (x - y)(x^{2} + xy + y^{2})$	M1	expanding - allow tabulation
	(A) $(x - y)(x^{2} + xy + y^{2})$ = $x^{3} + x^{2}y + xy^{2} - yx^{2} - xy^{2} - y^{3}$ = $x^{3} - y^{3} *$	E1	www
	(B) $(x + \frac{1}{2} y)^2 + \frac{3}{4} y^2$ = $x^2 + xy + \frac{1}{4} y^2 + \frac{3}{4} y^2$ = $x^2 + xy + y^2$	M1	$(x + \frac{1}{2}y)^2 = x^2 + \frac{1}{2}xy + \frac{1}{2}xy + \frac{1}{4}y^2$ o.e.
	$ = x + xy + 74 y + 74 y = x^{2} + xy + y^{2} $	E1 [4]	cao www
(ii)	$x^{3} - y^{3} = (x - y)[(x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}]$	M1	substituting results of (i)
	$(x + \frac{1}{2}y)^2 + \frac{3}{4}y^2 > 0$ [as squares ≥ 0]	M1	
$\stackrel{\Rightarrow}{\Rightarrow}$	if $x - y > 0$ then $x^3 - y^3 > 0$ if $x > y$ then $x^3 > y^3 *$	E1 [3]	

10

Mark Scheme

PMT

8(i) A: $1 + \ln x = 0$ $\Rightarrow \qquad \ln x = -1 \text{ so A is } (e^{-1}, 0)$	M1	
$\Rightarrow x = e^{-1}$ B: $x = 0, y = e^{0-1} = e^{-1}$ so B is $(0, e^{-1})$	A1 B1	SC1 if obtained using symmetry condone use of symmetry Penalise $A = e^{-1}$, $B = e^{-1}$, or co-ords wrong way
C: $f(1) = e^{1-1} = e^0 = 1$ g(1) = 1 + ln 1 = 1	E1 E1 [5]	round, but condone labelling errors.
(ii) <i>Either</i> by invertion: e.g. $y = e^{x-1} x \leftrightarrow y$ $x = e^{y-1}$		
$ \begin{array}{c} x - c \\ \Rightarrow \\ \ln x = y - 1 \\ \Rightarrow \\ 1 + \ln x = y \end{array} $	M1 E1	taking lns or exps
or by composing e.g. $f g(x) = f(1 + \ln x)$ $= e^{1 + \ln x - 1}$	M1	$e^{1 + \ln x - 1}$ or $1 + \ln(e^{x - 1})$
$= e^{\ln x} = x$	E1 [2]	
(iii) $\int_{0}^{1} e^{x-1} dx = \left[e^{x-1} \right]_{0}^{1}$	M1	$\begin{bmatrix} e^{x-1} \end{bmatrix}$ o.e or $u = x - 1 \Rightarrow \begin{bmatrix} e^u \end{bmatrix}$
$= e^{0} - e^{-1}$ = 1 - e^{-1}	M1 A1cao [3]	substituting correct limits for x or u o.e. not e^0 , must be exact.
$(\mathbf{iv}) \int \ln x dx = \int \ln x \frac{d}{dx}(x) dx$	M1	parts: $u = \ln x$, $du/dx = 1/x$, $v = x$, $dv/dx = 1$
$= x \ln x - \int x \cdot \frac{1}{x} dx$	A1	
$= x \ln x - x + c$	Alcao	condone no 'c'
$\Rightarrow \int_{e^{-1}}^{1} g(x) dx = \int_{e^{-1}}^{1} (1 + \ln x) dx$ $= \left[x + x \ln x - x \right]_{e^{-1}}^{1}$	B1ft	ft their ' $x \ln x - x$ ' (provided 'algebraic')
$= [x \ln x)]_{e^{-1}}^{1}$	DM1	substituting limits dep B1
$= 1\ln 1 - e^{-1}\ln(e^{-1}) \\= e^{-1} *$	E1 [6]	www
(v) Area = $\int_0^1 f(x) dx - \int_{e^{-1}}^1 g(x) dx$	M1	Must have correct limits
$= (1 - e^{-1}) - e^{-1}$ = 1 - 2/e	A1cao	0.264 or better.
or Area OCB = area under curve – triangle $= 1 - e^{-1} - \frac{1}{2} \times 1 \times 1$ $= \frac{1}{2} - e^{-1}$ or	M1	OCA or OCB = $\frac{1}{2} - e^{-1}$
Area OAC = triangle – area under curve = $\frac{1}{2} \times 1 \times 1 - e^{-1}$ = $\frac{1}{2} - e^{-1}$	A 1000	0.264 or botton
Total area = $2(\frac{1}{2} - e^{-1}) = 1 - 2/e$	A1cao [2]	0.264 or better

Mark Scheme

PMT

9(i)	<i>a</i> = 1/3	B1 [1]	or 0.33 or better
(ii)	$\frac{d y}{d x} = \frac{(3x-1)2x - x^2 \cdot 3}{(3x-1)^2}$ $= \frac{6x^2 - 2x - 3x^2}{(3x-1)^2}$ $= \frac{3x^2 - 2x}{(3x-1)^2}$	M1 A1	quotient rule
	$=\frac{(3x-1)^2}{(3x-2)^2} *$	E1 [3]	www – must show both steps; penalise missing brackets.
(iii) ⇒	dy/dx = 0 when x(3x - 2) = 0 x = 0 or x = 2/3, so at P, x = 2/3 when x = $\frac{2}{3}$, y = $\frac{(2/3)^2}{3 \times (2/3) - 1} = \frac{4}{9}$ when x = 0.6, dy/dx = -0.1875 when x = 0.8, dy/dx = 0.1633 Gradient increasing ⇒ minimum	M1 A1 M1 A1cao B1 B1 E1 [7]	if denom = 0 also then M0 o.e e.g. 0.6, but must be exact o.e e.g. 0.4, but must be exact -3/16, or -0.19 or better 8/49 or 0.16 or better o.e. e.g. 'from negative to positive'. Allow ft on their gradients, provided -ve and +ve respectively. Accept table with indications of signs of gradient.
Area	$\int \frac{x^2}{3x-1} dx \ u = 3x-1 \Rightarrow du = 3dx$ = $\int \frac{(u+1)^2}{9} \frac{1}{3} du$ = $\frac{1}{27} \int \frac{(u+1)^2}{u} du = \frac{1}{27} \int \frac{u^2 + 2u + 1}{u} du$ = $\frac{1}{27} \int (u+2+\frac{1}{u}) du = \frac{1}{27} \int (u+2+\frac{1}{u}) du = \frac{1}{27} \int (u+2+\frac{1}{u}) du$ = $\int_{2/3}^{1} \frac{x^2}{3x-1} dx$ h x = 2/3, u = 1, when x = 1, u = 2 = $\frac{1}{27} \int_{1}^{2} (u+2+\frac{1}{u}) du$ = $\frac{1}{27} \left[\frac{1}{2} u^2 + 2u + \ln u \right]_{1}^{2}$ = $\frac{1}{27} [(2+4+\ln 2) - (\frac{1}{2}+2+\ln 1)]$ = $\frac{1}{27} (3\frac{1}{2}+\ln 2) [=\frac{7+2\ln 2}{54}]$	B1 M1 E1 B1 M1 A1cao [7]	$\frac{(u+1)^2}{9}$ o.e. × 1/3 (du) expanding Condone missing du's $\left[\frac{1}{2}u^2 + 2u + \ln u\right]$ substituting correct limits, dep integration o.e., but must evaluate ln 1 = 0 and collect terms.

4753 (C3) Methods for Advanced Mathematics

Mark Scheme

\Rightarrow	$e^{2x} - 5e^{x} = 0$ $e^{x} (e^{x} - 5) = 0$ $e^{x} = 5$ $x = \ln 5 \text{ or } 1.6094$	M1 M1 A1 A1 [4]	factoring out e^x or dividing $e^{2x} = 5e^x$ by $e^x e^{2x} / e^x = e^x$ ln 5 or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
$or \Rightarrow \Rightarrow$	$ln(e^{2x}) = ln(5e^{x})$ 2x = ln 5 + x x = ln 5 or 1.6094	M1 A1 A1 A1 [4]	taking lns on $e^{2x} = 5e^x$ 2x, ln 5 + x ln 5 or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x = 0$
$\begin{array}{c} \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array}$	When $t = 0$, $T = 100$ 100 = 20 + b b = 80 When $t = 5$, $T = 60$ $60 = 20 + 80 e^{-5k}$ $e^{-5k} = \frac{1}{2}$ $k = \ln 2 / 5 = 0.139$	M1 A1 M1 A1 [4]	substituting $t = 0$, $T = 100$ cao substituting $t = 5$, $T = 60$ 1/5 ln 2 or 0.14 or better
\Rightarrow	$50 = 20 + 80 e^{-kt}$ $e^{-kt} = 3/8$ $t = \ln(8/3) / k = 7.075$ mins	M1 A1 [2]	Re-arranging and taking lns correctly – ft their <i>b</i> and <i>k</i> answers in range 7 to 7.1
3(i)	$\frac{d y}{d x} = \frac{1}{3} (1 + 3x^2)^{-2/3} .6x$ $= 2x (1 + 3x^2)^{-2/3}$	M1 B1 A1 [3]	chain rule $1/3 \ u^{-2/3}$ or $\frac{1}{3}(1+3x^2)^{-2/3}$ o.e but must be '2' (not 6/3) mark final answer
(ii) ⇒	$3y^{2} \frac{dy}{dx} = 6x$ $dy/dx = 6x/3y^{2}$ $= \frac{2x}{(1+3x^{2})^{2/3}} = 2x(1+3x^{2})^{-2/3}$	M1 A1 A1 E1 [4]	$3y^{2} \frac{dy}{dx}$ = 6x if deriving $2x(1+3x^{2})^{-2/3}$, needs a step of working

_

4(i) $\int_0^1 \frac{2x}{x^2 + 1} dx = \left[\ln(x^2 + 1) \right]_0^1$ = ln 2	M2 A1 [3]	$[\ln(x^2 + 1)]$ cao (must be exact)
or let $u = x^2 + 1$, $du = 2x dx$ $\Rightarrow \int_0^1 \frac{2x}{x^2 + 1} dx = \int_1^2 \frac{1}{u} du$ $= [\ln u]_1^2$ $= \ln 2$	M1 A1 A1 [3]	$\int \frac{1}{u} du$ or $\left[\ln(1+x^2) \right]_0^1$ with correct limits cao (must be exact)
(ii) $\int_{0}^{1} \frac{2x}{x+1} dx = \int_{0}^{1} \frac{2x+2-2}{x+1} dx = \int_{0}^{1} (2-\frac{2}{x+1}) dx$ = $[2x-2\ln(x+1)]_{0}^{1}$ = $2-2\ln 2$	M1 A1, A1 A1 A1 [5]	dividing by $(x + 1)$ 2, $-2/(x+1)$
or $\int_{0}^{1} \frac{2x}{x+1} dx$ let $u = x + 1$, $\Rightarrow du = dx$ $= \int_{1}^{2} \frac{2(u-1)}{u} du$ $= \int_{1}^{2} (2 - \frac{2}{u}) du$ $= [2u - 2\ln u]_{1}^{2}$ $= 4 - 2\ln 2 - (2 - 2\ln 1)$ $= 2 - 2\ln 2$	M1 B1 M1 A1 A1 [5]	substituting $u = x + 1$ and $du = dx$ (or du/dx = 1) and correct limits used for u or x 2(u - 1)/u dividing through by u $2u - 2\ln u$ allow ft on $(u - 1)/u$ (i.e. with 2 omitted) o.e. cao (must be exact)
5 (i) $a = 0, b = 3, c = 2$	B(2,1,0)	or $a = 0, b = -3, c = -2$
(ii) $a = 1, b = -1, c = 1$ or $a = 1, b = 1, c = -1$	B(2,1,0) [4]	
6 $f(-x) = -f(x), g(-x) = g(x)$ g f(-x) = g [-f (x)] = g f (x) \Rightarrow g f is even	B1B1 M1 E1 [4]	condone f and g interchanged forming $gf(-x)$ or $gf(x)$ and using f(-x) = -f(x) www
7 Let $\arcsin x = \theta$ $\Rightarrow x = \sin \theta$ $\theta = \arccos y \Rightarrow y = \cos \theta$ $\sin^2 \theta + \cos^2 \theta = 1$ $\Rightarrow x^2 + y^2 = 1$	M1 M1 E1 [3]	

January 2010

8(i) At P, $x \cos 3x = 0$ $\Rightarrow \cos 3x = 0$ $\Rightarrow 3x = \pi/2, 3\pi/2$ $\Rightarrow x = \pi/6, \pi/2$ So P is $(\pi/6, 0)$ and Q is $(\pi/2, 0)$	M1 M1 A1 A1 [4]	or verification $3x = \pi/2, (3\pi/2)$ dep both Ms condone degrees here
(ii) $\frac{dy}{dx} = -3x \sin 3x + \cos 3x$ At P, $\frac{dy}{dx} = -\frac{\pi}{2} \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = -\frac{\pi}{2}$ At TPs $\frac{dy}{dx} = -3x \sin 3x + \cos 3x = 0$ $\Rightarrow \cos 3x = 3x \sin 3x$ $\Rightarrow 1 = 3x \sin 3x / \cos 3x = 3x \tan 3x$ $\Rightarrow x \tan 3x = 1/3 *$	M1 B1 A1 M1 A1cao M1 E1 [7]	Product rule d/dx (cos $3x$) = $-3 \sin 3x$ cao (so for $dy/dx = -3x\sin 3x$ allow B1) mark final answer substituting their $-\pi/6$ (must be rads) $-\pi/2$ $dy/dx = 0$ and sin $3x / \cos 3x = \tan 3x$ used www
(iii) $A = \int_{0}^{\pi/6} x \cos 3x dx$ Parts with $u = x$, $dv/dx = \cos 3x$ $du/dx = 1$, $v = 1/3 \sin 3x$	B1 M1	Correct integral and limits (soi) – ft their P, but must be in radians
$\Rightarrow \qquad A = \left[\frac{1}{3}x\sin 3x\right]_{0}^{\frac{\pi}{6}} - \int_{0}^{\pi/6} \frac{1}{3}\sin 3xdx$	A1	can be without limits
$= \left[\frac{1}{3}x\sin 3x + \frac{1}{9}\cos 3x\right]_{0}^{\frac{\pi}{6}}$ $= \frac{\pi}{18} - \frac{1}{9}$	A1 M1dep A1 cao [6]	dep previous A1. substituting correct limits, dep 1 st M1: ft their P provided in radians o.e. but must be exact

9(i) ⇒	$f'(x) = \frac{(x^2 + 1)4x - (2x^2 - 1)2x}{(x^2 + 1)^2}$ = $\frac{4x^3 + 4x - 4x^3 + 2x}{(x^2 + 1)^2} = \frac{6x}{(x^2 + 1)^2} *$ When $x > 0$, $6x > 0$ and $(x^2 + 1)^2 > 0$ f'(x) > 0	M1 A1 E1 M1 E1 [5]	Quotient or product rule correct expression www attempt to show or solve $f'(x) > 0$ numerator > 0 and denominator > 0 or, if solving, $6x > 0 \Rightarrow x > 0$
(ii)	$f(2) = \frac{8-1}{4+1} = 1\frac{2}{5}$ Range is $-1 \le y \le 1\frac{2}{5}$	B1 B1 [2]	must be \leq , <i>y</i> or f(<i>x</i>)
\Rightarrow	f'(x) max when f''(x) = 0 6 - 18 x ² = 0 x ² = 1/3, x = 1/\sqrt{3} f'(x) = $\frac{6/\sqrt{3}}{(1\frac{1}{3})^2} = \frac{6}{\sqrt{3}} \cdot \frac{9}{16} = \frac{9\sqrt{3}}{8} = 1.95$	M1 A1 M1 A1 [4]	$(\pm)1/\sqrt{3}$ oe (0.577 or better) substituting $1/\sqrt{3}$ into f'(x) $9\sqrt{3}/8$ o.e. or 1.95 or better (1.948557)
(iv)	Domain is $-1 < x < 1\frac{2}{5}$ Range is $0 \le y \le 2$	B1 B1 M1 A1 cao [4]	ft their 1.4 but not $x \ge -1$ or $0 \le g(x) \le 2$ (not f) Reasonable reflection in $y = x$ from (-1, 0) to (1.4, 2), through (0, $\sqrt{2}/2$) allow omission of one of -1, 1.4, 2, $\sqrt{2}/2$
	$y = \frac{2x^2 - 1}{x^2 + 1} x \leftrightarrow y$ $x = \frac{2y^2 - 1}{y^2 + 1}$ $xy^2 + x = 2y^2 - 1$ $x + 1 = 2y^2 - xy^2 = y^2(2 - x)$ $y^2 = \frac{x + 1}{2 - x}$ $y = \sqrt{\frac{x + 1}{2 - x}} *$	M1 M1 M1 E1 [4]	(could start from g) Attempt to invert clearing fractions collecting terms in y^2 and factorising www

Mathematics (MEI)

Advanced GCE 4753

Methods for Advanced Mathematics (C3)

Mark Scheme for June 2010

PMT

Mark Scheme
Section A

1 $\int_{0}^{\pi/6} \cos 3x dx = \left[\frac{1}{3}\sin 3x\right]_{0}^{\pi/6}$ = $\frac{1}{3}\sin \frac{\pi}{2} - 0$ = $\frac{1}{3}$	M1 B1 A1cao [3]	$k \sin 3x, k > 0, k \neq 3$ $k = (\pm)1/3$ 0.33 or better	or M1 for $u = 3x \Rightarrow \int \frac{1}{3} \cos u du$ condone 90° in limit or M1 for $\left[\frac{1}{3} \sin u\right]$ so: $\sin 3x : M1B0, -\sin 3x : M0B0,$ $\pm 3\sin 3x : M0B0, -1/3 \sin 3x : M0B1$
2 $fg(x) = x+1 $ $gf(x) = x +1$	B1 B1 B1 B1 [4]	soi from correctly-shaped graphs (i.e. without intercepts) graph of $ x+1 $ only graph of $ x +1$	but must indicate which is which bod gf if negative <i>x</i> values are missing 'V' shape with (-1, 0) and (0, 1) labelled 'V' shape with (0, 1) labelled (0, 1)
3(i) $y = (1+3x^2)^{1/2}$ $\Rightarrow dy/dx = \frac{1}{2}(1+3x^2)^{-1/2}.6x$ $= 3x(1+3x^2)^{-1/2}$	M1 B1 A1 [3]	chain rule $\frac{1}{2} u^{-1/2}$ o.e., but must be '3'	can isw here
(ii) $y = x(1+3x^2)^{1/2}$ $\Rightarrow dy/dx = x \cdot \frac{3x}{\sqrt{1+3x^2}} + 1 \cdot (1+3x^2)^{1/2}$ $= \frac{3x^2+1+3x^2}{\sqrt{1+3x^2}}$ $= \frac{1+6x^2}{\sqrt{1+3x^2}} *$	M1 A1ft M1 E1 [4]	product rule ft their dy/dx from (i) common denominator or factoring $(1+3x^2)^{-1/2}$ www	must show this step for M1 E1

4 $p = 100/x = 100$ $\Rightarrow dp/dx = -100x^{-2}$ $dp/dt = dp/dx \times dx/dt = 10$ When $x = 50$, $dp/dx = (1 \Rightarrow dp/dt) = 10 \times -0.04$	dx/dt (-100/50 ²)	M1 A1 M1 B1 M1dep A1cao [6]	attempt to differentiate $-100x^{-2}$ o.e. o.e. soi soi substituting $x = 50$ into their dp/dx dep 2 nd M1 o.e. e.g. decreasing at 0.4	condone poor notation if chain rule correct or $x = 50 + 10 t$ B1 $\Rightarrow P = 100/x = 100/(50 + 10 t)$ $\Rightarrow dP/dt = -100(50 + 10 t)^{-2} \times 10 = -1000/(50 + 10t)^{-2}$ M1 A1 When $t = 0$, $dP/dt = -1000/50^2 = -0.4$ A1
5 $y^3 = xy - x^2$ $\Rightarrow 3y^2 dy/dx = x dy$ $\Rightarrow 3y^2 dy/dx - x dy$ $\Rightarrow (3y^2 - x) dy/dx =$ $\Rightarrow dy/dx = (y - 2x)$ TP when dy/dx	$\frac{y}{dx} = \frac{y - 2x}{y - 2x}$	B1 B1 M1 E1	$3y^{2}dy/dx$ x dy/dx + y - 2x collecting terms in dy/dx only	must show 'x dy/dx + y' on one side
$\Rightarrow y = 2x$ $\Rightarrow (2x)^3 = x \cdot 2x - x$ $\Rightarrow 8x^3 = x^2$ $\Rightarrow x = 1/8 * (or 0)$		M1 M1 E1 [7]	or $x = 1/8$ and $dy/dx = 0 \Rightarrow y = \frac{1}{4}$ or $(1/4)^3 = (1/8)(1/4) - (1/8)^2$ or verifying e.g. $1/64 = 1/64$	or $x = 1/8 \Rightarrow y^3 = (1/8)y - 1/64$ M1 verifying that $y = \frac{1}{4}$ is a solution (must show evidence*) M1 $\Rightarrow dy/dx = (\frac{1}{4} - 2(1/8))/() = 0$ E1 *just stating that $y = \frac{1}{4}$ is M1 M0 E0
6 $f(x) = 1 + 2 \sin x$ $x = 1 + 2 \sin 3y$ $\Rightarrow \sin 3y = (x - 1)/3$ $\Rightarrow 3y = \arcsin[(x - 1)/3]$ $\Rightarrow y = \frac{1}{3} \arcsin\left[\frac{x - 1}{2}\right]$ Range of f is $-1 \le x \le 3$	$\begin{bmatrix} x^{2} \\ -1 \end{bmatrix}$ so $f^{-1}(x) = \frac{1}{3} \arcsin\left[\frac{x-1}{2}\right]$	M1 A1 A1 A1 A1 [6]	attempt to invert must be $y = \dots$ or $f^{-1}(x) = \dots$ or $-1 \le (x - 1)/2 \le 1$ must be 'x', not y or $f(x)$	at least one step attempted, or reasonable attempt at flow chart inversion (or any other variable provided same used on each side) condone <'s for M1 allow unsupported correct answers; -1 to 3 is M1 A0
7 (<i>A</i>) True , (<i>B</i>) T Counterexample	Frue, (C) False e, e.g. $\sqrt{2} + (-\sqrt{2}) = 0$	B2,1,0 B1 [3]		

8(i)	When $x = 1$, $y = 3 \ln 1 + 1 - 1^2$ = 0	E1 [1]		
(ii) \Rightarrow	$\frac{dy}{dx} = \frac{3}{x} + 1 - 2x$ At R, $\frac{dy}{dx} = 0 = \frac{3}{x} + 1 - 2x$ $3 + x - 2x^2 = 0$	M1 A1cao M1	$d/dx (\ln x) = 1/x$ re-arranging into a quadratic = 0	SC1 for $x = 1.5$ unsupported, SC3 if verified
$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	(3-2x)(1+x) = 0 x = 1.5, (or -1) y = 3 ln 1.5 + 1.5 - 1.5 ² = 0.466 (3 s.f.)	M1 A1 M1 A1cao	factorising or formula or completing square substituting their x	
	$\frac{d^2 y}{dx^2} = -\frac{3}{x^2} - 2$ When $x = 1.5$, $\frac{d^2 y}{dx^2} (= -10/3) < 0 \implies \max$	B1ft E1 [9]	ft their dy/dx on equivalent work www – don't need to calculate $10/3$	but condone rounding errors on 0.466
(iii) ⇒	Let $u = \ln x$, $du/dx = 1/x$ dv/dx = 1, $v = x\int \ln x dx = x \ln x - \int x \cdot \frac{1}{x} dx$	M1	parts	
	$= x \ln x - \int 1 dx$ $= x \ln x - x + c$	A1 A1	condone no c	allow correct result to be quoted (SC3)
⇒	$A = \int_{1}^{205} (3\ln x + x - x^{2}) dx$ = $\left[3x \ln x - 3x + \frac{1}{2}x^{2} - \frac{1}{3}x^{3} \right]_{1}^{205}$ = $-2.5057 + 2.833$ = 0.33 (2 s.f.)	B1 B1ft M1dep A1 cao [7]	correct integral and limits (soi) $\left[3 \times t \text{ heir '} x \ln x - x' + \frac{1}{2}x^2 - \frac{1}{3}x^3 \right]$ substituting correct limits dep 1 st B1	

4753		Mark Scheme	June 2010
9(i) $(0, \frac{1}{2})$	B1 [1]	allow $y = \frac{1}{2}$, but not $(x =) \frac{1}{2}$ or $(\frac{1}{2}, 0)$ nor P = $\frac{1}{2}$	
(ii) $\frac{dy}{dx} = \frac{(1+e^{2x})2e^{2x}-e^{2x}\cdot 2e^{2x}}{(1+e^{2x})^2}$ $= \frac{2e^{2x}}{(1+e^{2x})^2}$ When $x = 0$, $dy/dx = 2e^{0}/(1+e^{0})^2 = \frac{1}{2}$	M1 A1 A1 B1ft [4]	Quotient or product rule correct expression – condone missing bracket cao – mark final answer follow through their derivative	product rule: $\frac{dy}{dx} = e^{2x} \cdot 2e^{2x}(-1)(1+e^{2x})^{-2} + 2e^{2x}(1+e^{2x})^{-1}$ $-\frac{2e^{2x}}{(1+e^{2x})^2}$ from $(udv - vdu)/v^2$ SC1
(iii) $A = \int_{0}^{1} \frac{e^{2x}}{1+e^{2x}} dx$	B1	correct integral and limits (soi)	condone no d <i>x</i>
$= \left[\frac{1}{2}\ln(1+e^{2x})\right]_{0}^{1}$	M1 A1	$k \ln(1 + e^{2x})$ k = ¹ / ₂	
or let $u = 1 + e^{2x}$, $du/dx = 2 e^{2x}$	M1	or $v = e^{2x}$, $dv/dx = 2e^{2x}$ o.e.	
$\Rightarrow A = \int_{2}^{1+e^2} \frac{1/2}{u} \mathrm{d} u = \left[\frac{1}{2}\ln u\right]_{2}^{1+e^2}$	A1	$[\frac{1}{2} \ln u]$ or $[\frac{1}{2} \ln (v+1)]$	
$=\frac{1}{2}\ln(1+e^2)-\frac{1}{2}\ln 2$	M1	substituting correct limits	
$=\frac{1}{2}\ln\left[\frac{1+e^2}{2}\right]*$	E1 [5]	www	allow missing dx's or incompatible limits, but penalise missing brackets
$(\mathbf{iv})_{g(-x)} = \frac{1}{2} \left[\frac{e^{-x} - e^{x}}{e^{-x} + e^{x}} \right] = -\frac{1}{2} \left[\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \right] = -g(x)$	M1 E1	substituting $-x$ for x in $g(x)$ completion www – taking out –ve must	not $g(-x) \neq g(x)$. Condone use of f for g.
Rotational symmetry of order 2 about O	B1 [3]	be clear must have 'rotational' 'about O', 'order 2' (oe)	
$\mathbf{(v)}(A) g(x) + \frac{1}{2} = \frac{1}{2} \cdot \frac{e^x - e^{-x}}{e^x + e^{-x}} + \frac{1}{2} = \frac{1}{2} \cdot \left(\frac{e^x - e^{-x} + e^x + e^{-x}}{e^x + e^{-x}}\right)$	M1	combining fractions (correctly)	
$=\frac{1}{2}.(\frac{2e^{x}}{e^{x}+e^{-x}})$	A1		
$= \frac{e^{x} \cdot e^{x}}{e^{x}(e^{x} + e^{-x})} = \frac{e^{2x}}{e^{2x} + 1} = f(x)$ (B) Translation $\begin{pmatrix} 0\\ 1/2 \end{pmatrix}$ (C) Rotational symmetry [of order 2]about P	E1 M1 A1 B1 [6]	translation in y direction up ¹ / ₂ unit dep 'translation' used o.e. condone omission of 180°/order 2	allow 'shift', 'move' in correct direction for M1. $\begin{pmatrix} 0\\ 1/2 \end{pmatrix}$ alone is SC1.

PMT

4

Mathematics (MEI)

Advanced GCE

Unit 4753: Methods for Advanced Mathematics

Mark Scheme for January 2011

January	2011

	$2\sqrt{-2}$ (1 2)1/3	M1	$(1+x^2)^{1/3}$	Do not allow MR for square root
1	$y = \sqrt[3]{1+x^2} = (1+x^2)^{1/3}$	M1 M1	(1 + x) chain rule	their $dy/du \times du/dx$ (available for wrong indices)
\Rightarrow	$\frac{d y}{d x} = \frac{1}{3} (1 + x^2)^{-\frac{2}{3}} \cdot 2x$	B1	$(1/3) u^{-2/3}$ (soi)	no ft on $\frac{1}{2}$ index
ŕ	$\frac{1}{dx} = \frac{1}{3}(1+x^2)^{-1}.2x^{-1}$	DI	(1/5) u (501)	
	$=\frac{2}{3}x(1+x^2)^{-\frac{2}{3}}$	A1	cao, mark final answer	oe e.g. $\frac{2x(1+x^2)^{-\frac{2}{3}}}{3}$, $\frac{2x}{3\sqrt[3]{(1+x^2)^2}}$, etc but must combine 2 with 1/3.
	$=-\frac{1}{3}x(1+x^2)^{-3}$	[4]	eao, mark imar answer	$\frac{1}{3}, \frac{1}{2^{3}/(1+z^{2})^{2}}, \frac{1}{2^{3}}, \frac{1}{2$
	5	[ד]		$3\sqrt[3]{(1+x)}$
2	$ 2x+1 \ge 4$			Same scheme for other methods, e.g. squaring, graphing
\Rightarrow	$2x + 1 \ge 4 \Longrightarrow x \ge 1\frac{1}{2}$	M1 A1	allow M1 for 1 ¹ / ₂ seen	
or	$2x + 1 \le -4 \Longrightarrow x \le -2\frac{1}{2}$	M1 A1	allow M1 for $-2\frac{1}{2}$ seen	Penalise both > and < once only.
01	$2x + 1 \ge 1 \Rightarrow x \ge 2/2$	[4]		-1 if both correct but final ans expressed incorrectly, e.g $-2\frac{1}{2} \ge x \ge 1\frac{1}{2}$ or
				$1\frac{1}{2} \le x \le -2\frac{1}{2}$ (or even $-2\frac{1}{2} \le x \le 1\frac{1}{2}$ from previously correct work) e.g. SC3
3	$A = \pi r^2$			
\Rightarrow	$dA/dr = 2\pi r$	M1A1	$2\pi r$	M1A0 if incorrect notation, e.g. dy/dx , dr/dA , if seen. 2r is M1A0
	When $r = 2$, $dA/dr = 4\pi$, $dA/dt = 1$	A1	soi (at any stage)	must be dA/dr (soi) and dA/dt
	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{\mathrm{d}A}{\mathrm{d}r}$			any correct form stated with relevant variables, e.g.
	$\frac{1}{\mathrm{d}t} = \frac{1}{\mathrm{d}r} \cdot \frac{1}{\mathrm{d}t}$	M1	chain rule (o.e)	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}A} \cdot \frac{\mathrm{d}A}{\mathrm{d}t}, \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}A} / \frac{\mathrm{d}t}{\mathrm{d}A}, \text{etc.}$
\Rightarrow	$1 = 4\pi . dr/dt$			$\frac{dt}{dt} = \frac{dt}{dA} \cdot \frac{dt}{dt}, \frac{dt}{dt} = \frac{dt}{dA} \cdot \frac{dt}{dA},$
\Rightarrow	$dr/dt = 1/4\pi = 0.0796 \text{ (mm/s)}$	A1	cao: 0.08 or better condone truncation	
-	dr/dt = 1/1t = 0.0790 (mm/s)	[5]		allow $1/4\pi$ but mark final answer
4	$\sin \theta = BC/AC, \cos \theta = AB/AC$	M1	or <i>a/b</i> , <i>c/b</i>	allow o/h, a/h etc if clearly marked on triangle.
	$AB^{2} + BC^{2} = AC^{2}$		condone taking $AC = 1$	but must be stated
\Rightarrow	$(AB/AC)^{2} + (BC/AC)^{2} = 1$			
	$\cos^2\theta + \sin^2\theta = 1$	A1	Must use Pythagoras	arguing backwards unless \Leftrightarrow used A0
	Valid for $(0^{\circ} <) \theta < 90^{\circ}$	B1	allow \leq , or 'between 0 and 90' or < 90	
	Valid for $(0 <) 0 < 30$	[3]	allow $< \pi/2$ or 'acute'	
		L- J		for first and second B1s graphs must include negative <i>x</i> values
5(i)	$\langle \rangle$	B1	shape of $y = e^x - 1$ and through O	condone no asymptote $y = -1$ shown
5(1)	\mathbb{N}	B1 B1	shape of $y = e^{-x}$ and through O shape of $y = 2e^{-x}$	condone no asymptote $y = -1$ shown asymptotic to x-axis (shouldn't cross)
	2	B1 B1	shape of $y = 2e$ through (0, 2) (not (2,0))	asymptotic to x-axis (shouldn't cross)
		[3]	(0, 2) (not (2,0))	
(ii)	$e^{x} - 1 = 2e^{-x}$	M1	equating	
(II) ⇒	$e^{-1} = 2e$ $e^{2x} - e^x = 2$	1/11	cquaing	
	$e^{x} - e^{z} = 2$ $(e^{x})^{2} - e^{x} - 2 = 0$	M1	re-arranging into a quadratic in $e^x = 0$	allow one error but must have $e^{2x} = (e^x)^2$ (soi)
⇒		1011	$10^{-arranging}$ into a quadratic in $C = 0$	anow one error out must have $c = (c)$ (sol)
⇒	$(e^x - 2)(e^x + 1) = 0$	B1	stated www	award even if not from quadratic method (i.e. by 'fitting') provided www
\Rightarrow	$e^x = 2$ (or -1)	B1 B1	www	allow for unsupported answers, provided www
\Rightarrow	$x = \ln 2$	B1 B1cao	www	need not have used a quadratic, provided www
\Rightarrow	y = 1	[5]	VV VV VV	need not nave used a quadrane, provided www
1		[2]		

January 2011

F			
$6 \qquad (x+y)^2 = 4x$ $\Rightarrow \qquad 2(x+y)(1+\frac{dy}{dx}) = 4$	M1	Implicit differentiation of LHS	Award no marks for solving for y and attempting to differentiate allow one error but must include dy/dx
$\Rightarrow 1 + \frac{dy}{dx} = \frac{4}{2(x+y)} = \frac{2}{x+y}$	A1	correct expression = 4	ignore superfluous $dy/dx =$ for M1, and for both A1s if not pursued condone missing brackets
$\Rightarrow \qquad \frac{dy}{dx} = \frac{2}{x+y} - 1 *$	A1	www (AG)	A0 if missing brackets in earlier working
or $x^{2} + 2xy + y^{2} = 4x$ $\Rightarrow 2x + 2x\frac{dy}{dx} + 2y + 2y\frac{dy}{dx} = 4$ $\Rightarrow \frac{dy}{dx}(2x + 2y) = 4 - 2x - 2y$	M1dep A1	Implicit differentiation of LHS dep correct expansion correct expression = 4 (oe after re- arrangement)	allow 1 error provided $2xdy/dx$ and $2ydy/dx$ are correct, but must expand $(x + y)^2$ correctly for M1 (so $x^2 + y^2 = 4x$ is M0) ignore superfluous $dy/dx =$ for M1, and for both A1s if not pursued
$\Rightarrow \frac{dy}{dx} = \frac{4}{2x+2y} = 4 - 2x - 2y$ $\Rightarrow \frac{dy}{dx} = \frac{4}{2x+2y} - 1 = \frac{2}{x+y} - 1 *$	A1	www (AG)	A0 if missing brackets in earlier working
When $x = 1$, $y = 1$, $\frac{dy}{dx} = \frac{2}{1+1} - 1 = 0$ *	B1 [4]	(AG) oe (e.g. from $x + y = 2$)	or e.g $2/(x + y) - 1 = 0 \Rightarrow x + y = 2$, $\Rightarrow 4 = 4x$, $\Rightarrow x = 1$, $y = 1$ (oe)
7 (i) bounds $-\pi + 1$, $\pi + 1$ $\Rightarrow -\pi + 1 < f(x) < \pi + 1$	B1B1 B1cao [3]	or < y < or ($-\pi$ + 1, π + 1)	not < <i>x</i> <, not 'between'
(ii) $y = 2\arctan x + 1 x \leftrightarrow y$ $x = 2\arctan y + 1$	M1	attempt to invert formula	one step is enough, i.e. $y - 1 = 2\arctan x$ or $x - 1 = 2\arctan y$
$\Rightarrow \frac{x-1}{2} = \arctan y$	A1	or $\frac{y-1}{2} = \arctan x$	need not have interchanged x and y at this stage
$\Rightarrow \qquad y = \tan(\frac{x-1}{2}) \Rightarrow f^{-1}(x) = \tan(\frac{x-1}{2})$	A1		allow $y = \dots$
	B1 B1	reasonable reflection in $y = x$ (1, 0) intercept indicated.	curves must cross on $y = x$ line if present (or close enough to imply intention) curves shouldn't touch or cross in the third quadrant
	[5]		

January 2011

		-		
8 (i)	$\int_{0}^{1} \frac{x^{3}}{1+x} dx let \ u = 1+x, \ du = dx$			
	$J_0 + x$ when $x = 0, u = 1$, when $x = 1, u = 2$	B1	a = 1, b = 2	seen anywhere, e.g. in new limits
			$(u-1)^{3}/u$	
	$= \int_{1}^{2} \frac{(u-1)^{3}}{u} \mathrm{d}u$	MI	and in a (a anne atla)	
	$= \int_{1}^{2} \frac{(u^{3} - 3u^{2} + 3u - 1)}{u} du$	M1	expanding (correctly)	
	$\int_{1}^{2} u^{2} = \int_{1}^{2} (u^{2} - 3u + 3 - \frac{1}{u}) du^{*}$	A1dep	dep d u = d x (o.e.) AG	e.g. $du/dx = 1$, condone missing dx's and du's, allow $du = 1$
	$\int_{0}^{1} \frac{x^{3}}{1+x} dx = \left[\frac{1}{3}u^{3} - \frac{3}{2}u^{2} + 3u - \ln u\right]_{1}^{2}$	B1	$\left[\frac{1}{3}u^{3} - \frac{3}{2}u^{2} + 3u - \ln u\right]$	
	$= (\frac{8}{3} - 6 + 6 - \ln 2) - (\frac{1}{3} - \frac{3}{2} + 3 - \ln 1)$	M1	substituting correct limits dep integrated	upper – lower; may be implied from 0.140
	$\frac{5}{=\frac{5}{6} - \ln 2}$ y = x ² ln(1 + x)	A1cao [7]	must be exact – must be 5/6	must have evaluated $\ln 1 = 0$
(ii)		M1	Product rule	
\Rightarrow	$\frac{dy}{dx} = x^2 \cdot \frac{1}{1+x} + 2x \cdot \ln(1+x)$	B1 A1	$\frac{d}{dx} (\ln(1+x)) = \frac{1}{(1+x)}$ cao (oe) mark final ans	or d/dx (ln u) = 1/ u where u = 1 + x ln1+ x is A0
(⇒	$=\frac{x^2}{1+x}+2x\ln(1+x)$ When x = 0, dy/dx = 0 + 0.ln 1 = 0 Origin is a stationary point)	M1 A1cao [5]	substituting $x = 0$ into correct deriv www	when $x = 0$, $dy/dx = 0$ with no evidence of substituting M1A0 but condone missing bracket in $ln(1+x)$
(iii)	$A = \int_0^1 x^2 \ln(1+x) \mathrm{d} x$	B1	Correct integral and limits	condone no dx , limits (and integral) can be implied by subsequent work
	let $u = \ln(1+x)$, $dv/dx = x^2$ $\frac{du}{dx} = \frac{1}{1+x}$, $v = \frac{1}{3}x^3$	M1	parts correct	u, du/dx , dv/dx and v all correct (oe)
\Rightarrow	$A = \left[\frac{1}{3}x^{3}\ln(1+x)\right]_{0}^{1} - \int_{0}^{1}\frac{1}{3}\frac{x^{3}}{1+x} dx$	A1		condone missing brackets
	$=\frac{1}{3}\ln 2 - (\frac{5}{18} - \frac{1}{3}\ln 2)$	B1	$=\frac{1}{3}\ln 2$	
	$=\frac{1}{3}\ln 2 - \frac{5}{18} + \frac{1}{3}\ln 2$	B1ft	$\dots - 1/3$ (result from part (i))	condone missing bracket, can re-work from scratch
	$=\frac{2}{3}\ln 2 - \frac{5}{18}$	A1	cao	oe e.g. $=\frac{12 \ln 2 - 5}{18}, \frac{1}{3} \ln 4 - \frac{5}{18}$, etc but must have evaluated ln 1 =0
		[6]		Must combine the two ln terms

January	2011	
---------	------	--

9(i) $\frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{\cos x \cdot \cos x - \sin x \cdot (-\sin x)}{\cos^2 x}$ $= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} *$	M1 A1 A1 [3]	Quotient (or product) rule (AG)	product rule: $\frac{1}{\cos x} \cdot \cos x + \sin x \left(-\frac{1}{\cos^2 x}\right) (-\sin x)$ but must show evidence of using chain rule on $1/\cos x$ (or d/dx (sec x) = sec $x \tan x$ used)
(ii) Area = $\int_{0}^{\pi/4} \frac{1}{\cos^{2} x} dx$ = $[\tan x]_{0}^{\pi/4}$ = $\tan(\pi/4) - \tan 0 = 1$	B1 M1 A1 [3]	correct integral and limits (soi) $ [\tan x] \text{ or } \left[\frac{\sin x}{\cos x} \right] $	condone no dx; limits can be implied from subsequent work unsupported scores M0
(iii) $f(0) = 1/\cos^2(0) = 1$ $g(x) = 1/2\cos^2(x + \pi/4)$ $g(0) = 1/2\cos^2(\pi/4) = 1$ (\Rightarrow f and g meet at (0, 1))	B1 M1 A1 [3]	must show evidence	or $f(\pi/4) = 1/\cos^2(\pi/4) = 2$ so $g(0) = \frac{1}{2} f(\pi/4) = 1$
(iv) Translation in <i>x</i> -direction through $-\pi/4$ Stretch in <i>y</i> -direction scale factor $\frac{1}{2}$ $\frac{1}{(-\pi/4, \frac{1}{2})}$ $x = -3\pi/4$ $x = -\pi/2$ $x = \pi/4$ $x = \pi/2$	M1 A1 M1 A1 B1ft B1 B1dep [8]	must be in <i>x</i> -direction, or $\begin{pmatrix} -\pi/4 \\ 0 \end{pmatrix}$ must be in <i>y</i> -direction asymptotes correct min point $(-\pi/4, \frac{1}{2})$ curves intersect on <i>y</i> -axis correct curve, dep B3, with asymptote lines indicated and correct, and TP in correct position	'shift' or 'move' for 'translation' M1 A0; $\begin{pmatrix} -\pi/4 \\ 0 \end{pmatrix}$ alone SC1 'contract' or 'compress' or 'squeeze' for 'stretch' M1A0; 'enlarge' M0 stated or on graph; condone no $x =,$ ft $\pi/4$ to right only (viz. $-\pi/4, 3\pi/4$) stated or on graph; ft $\pi/4$ to right only (viz. $(\pi/4, \frac{1}{2})$) 'y-values halved', or 'x-values reduced by $\pi/4$, are M0 (not geometric transformations), but for M1 condone mention of x- and y- values provided transformation words are used.
(v) Same as area in (ii), but stretched by s.f. $\frac{1}{2}$. So area = $\frac{1}{2}$.	B1ft [1]	¹ / ₂ area in (ii)	or $\int_{-\pi/4}^{0} g(x) dx = \frac{1}{2} \int_{-\pi/4}^{0} \frac{1}{\cos^2(x + \pi/4)} dx = \frac{1}{2} \left[\tan(x + \pi/4) \right]_{-\pi/4}^{0} = \frac{1}{2}$ allow unsupported

Mathematics (MEI)

Advanced GCE

Unit 4753: Methods for Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Marking instructions for GCE Mathematics (MEI): Pure strand

- 1. You are advised to work through the paper yourself first. Ensure you familiarise yourself with the mark scheme before you tackle the practice scripts.
- 2. You will be required to mark ten practice scripts. This will help you to understand the mark scheme and will not be used to assess the quality of your marking. Mark the scripts yourself first, using the annotations. Turn on the comments box and make sure you understand the comments. You must also look at the definitive marks to check your marking. If you are unsure why the marks for the practice scripts have been awarded in the way they have, please contact your Team Leader.
- 3. When you are confident with the mark scheme, mark the ten standardisation scripts. Your Team Leader will give you feedback on these scripts and approve you for marking. (If your marking is not of an acceptable standard your Team Leader will give you advice and you will be required to do further work. You will only be approved for marking if your Team Leader is confident that you will be able to mark candidate scripts to an acceptable standard.)
- 4. Mark strictly to the mark scheme. If in doubt, consult your Team Leader using the messaging system within *scoris*, by email or by telephone. Your Team Leader will be monitoring your marking and giving you feedback throughout the marking period.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

5. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

4753

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- 6. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- 7. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

8. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

9. Rules for crossed out and/or replaced work

If work is crossed out and not replaced, examiners should mark the crossed out work if it is legible.

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If two or more attempts are made at a question, and just one is not crossed out, examiners should ignore the crossed out work and mark the work that is not crossed out.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

10. For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

11. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

12. For answers scoring no marks, you must either award NR (no response) or 0, as follows:

Award NR (no response) if:

- Nothing is written at all in the answer space
- There is a comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

The hash key [#] on your keyboard will enter NR.

Award 0 if:

- There is an attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.
- 13. The following abbreviations may be used in this mark scheme.

M1	method mark (M2, etc, is also used)
A1	accuracy mark
B1	independent mark
E1	mark for explaining
U1	mark for correct units
G1	mark for a correct feature on a graph
M1 dep*	method mark dependent on a previous mark, indicated by *
cao	correct answer only
ft	follow through
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	special case
soi	seen or implied

14. Annotating scripts. The following annotations are available:

√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained)
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	g is also available to highlight any particular points on a script.

15. The comments box will be used by the Principal Examiner to explain his or her marking of the practice scripts for your information. Please refer to these comments when checking your practice scripts.

Please do not type in the comments box yourself. Any questions or comments you have for your Team Leader should be communicated by the *scoris* messaging system, e-mail or by telephone.

- 16. Write a brief report on the performance of the candidates. Your Team Leader will tell you when this is required. The Assistant Examiner's Report Form (AERF) can be found on the Cambridge Assessment Support Portal. This should contain notes on particular strengths displayed, as well as common errors or weaknesses. Constructive criticisms of the question paper/mark scheme are also appreciated.
- 17. Link Additional Objects with work relating to a question to those questions (a chain link appears by the relevant question number) see scoris assessor Quick Reference Guide page 19-20 for instructions as to how to do this this guide is on the Cambridge Assessment Support Portal and new users may like to download it with a shortcut on your desktop so you can open it easily! For AOs containing just formulae or rough working not attributed to a question, tick at the top to indicate seen but not linked. When you submit the script, *scoris* asks you to confirm that you have looked at all the additional objects. Please ensure that you have checked all Additional Objects thoroughly.
- 18. The schedule of dates for the marking of this paper is displayed under 'OCR Subject Specific Details' on the Cambridge Assessment Support Portal. It is vitally important that you meet these requirements. If you experience problems that mean you may not be able to meet the deadline then you must contact your Team Leader without delay.

1 ⇒ or	2x-1 = x 2x - 1 = x, x = 1 -(2x - 1) = x, x = 1/3	M1A1 M1A1 [4]	www www, or $2x - 1 = -x$ must be exact for A1 (e.g. not 0.33, but allow 0.3) condone doing both equalities in one line e.g. $-x = 2x - 1 = x$, etc	allow unsupported answers or from graph or squaring $\Rightarrow 3x^2 - 4x + 1 = 0$ M1 $\Rightarrow (3x - 1)(x - 1) = 0$ M1 factorising, formula or comp. square $\Rightarrow x = 1, 1/3$ A1 A1 allow M1 for sign errors in factorisation -1 if more than two solutions offered, but isw inequalities
2	$gf(x) = e^{2\ln x}$ $= e^{\ln x^{2}}$ $= x^{2}$	M1 M1 A1 [3]	Forming gf(x) (soi)	Doing fg: $2\ln(e^x) = 2x$ SC1 Allow x^2 (but not $2x$) unsupported
3(i)	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{x^4}$ $= \frac{x - 2x \ln x}{x^4}$	M1 B1 A1	quotient rule with $u = \ln x$ and $v = x^2$ d/dx (ln x) = 1/x soi correct expression (o.e.)	Consistent with their derivatives. $udv \pm vdu$ in the quotient rule is M0 Condone $\ln x.2x = \ln 2x^2$ for this A1 (provided $\ln x.2x$ is shown)
	$=\frac{1-2\ln x}{x^3}$	A1 [4]	o.e. cao, mark final answer, but must have divided top and bottom by x	e.g. $\frac{1}{x^3} - \frac{2\ln x}{x^3}$, $x^{-3} - 2x^{-3}\ln x$
or	$\frac{d y}{d x} = -2x^{-3} \ln x + x^{-2} \left(\frac{1}{x}\right)$ $= -2x^{-3} \ln x + x^{-3}$	M1 B1 A1 A1 [4]	product rule with $u = x^{-2}$ and $v = \ln x$ d/dx (ln x) = 1/x soi correct expression o.e. cao, mark final answer, must simplify the x^{-2} .(1/x) term.	or vice-versa
(ii)	$\int \frac{\ln x}{x^2} dx \text{let } u = \ln x, du/dx = 1/x$ $dv/dx = 1/x^2, v = -x^{-1}$ $= -\frac{1}{x}\ln x + \int \frac{1}{x} \cdot \frac{1}{x} dx$	M1 A1	Integration by parts with $u = \ln x$, $du/dx = 1/x$, $dv/dx = 1/x^2$, $v = -x^{-1}$ must be correct, condone + c	Must be correct
	$= -\frac{1}{x}\ln x + \int \frac{1}{x^2} \mathrm{d}x$			at this stage . Need to see $1/x^2$
	$= -\frac{1}{x}\ln x - \frac{1}{x} + c$	A1	condone missing c	
	$= -\frac{1}{x}(\ln x + 1) + c^*$	A1 [4]	NB AG must have <i>c</i> shown in final answer	

4(i)	$h = a - be^{-kt} \implies a = 10.5$ (their) $a - be^{0} = 0.5$ $\implies b = 10$	B1 M1 A1cao [3]	a need not be substituted	
(ii) \Rightarrow \Rightarrow \Rightarrow	$h = 10.5 - 10e^{-kt}$ When $t = 8$, $h = 10.5 - 10e^{-8k} = 6$ $10e^{-8k} = 4.5$ $-8k = \ln 0.45$ $k = \ln 0.45/(-8) = 0.09981 = 0.10$	M1 M1 A1 [3]	ft their <i>a</i> and <i>b</i> (even if made up) taking lns correctly on a correct re- arrangement - ft <i>a</i> , <i>b</i> if not eased cao (www) but allow 0.1	allow M1 for $a - be^{-8k} = 6$ allow <i>a</i> and <i>b</i> unsubstituted allow their 0.45 (or 4.5) to be negative
5 ⇒	$y = x^{2}(1+4x)^{1/2}$ $\frac{dy}{dx} = x^{2} \cdot \frac{1}{2}(1+4x)^{-1/2} \cdot 4 + 2x(1+4x)^{1/2}$	M1 B1 A1	product rule with $u = x^2$, $v = \sqrt{(1 + 4x)}$ ^{1/2} () ^{-1/2} soi correct expression	consistent with their derivatives; condone wrong index in v used for M1 only
	$= 2x(1+4x)^{-1/2}(x+1+4x)$ $= \frac{2x(5x+1)}{\sqrt{1+4x}} *$	M1 A1 [5]	factorising or combining fractions NB AG	(need not factor out the 2x) must have evidence of $x + 1 + 4x$ oe or $2x(5x + 1)(1 + 4x)^{-\frac{1}{2}}$ or $2x(5x + 1)/(1 + 4x)^{\frac{1}{2}}$
6(i)	$\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}/2 + \sqrt{3}/2 = \sqrt{3}$	B1 [1]	must be exact, must show working	Not just $\sin(\pi/3) + \cos(\pi/6) = \sqrt{3}$, if substituting for <i>y</i> and solving for <i>x</i> (or vv) must evaluate $\sin \pi/3$ e.g. not $\arccos(\sqrt{3} - \sin \pi/3)$
(ii) ⇒	$2\cos 2x - \sin y \frac{d y}{d x} = 0$ $2\cos 2x = \sin y \frac{d y}{d x}$	M1 A1	Implicit differentiation correct expression	allow one error, but must have $(\pm) \sin y dy/dx$. Ignore $dy/dx = \dots$ unless pursued. $2\cos 2x dx - \sin y dy = 0$ is M1A1 (could differentiate wrt y, get dx/dy , etc.)
\Rightarrow	$\frac{d y}{d x} = \frac{2\cos 2x}{\sin y}$ When $x = \pi/6$, $y = \pi/6$ $\frac{d y}{d x} = \frac{2\cos \pi/3}{\sin \pi/6} = 2$	A1cao M1dep A1 [5]	substituting dep 1 st M1 www	$\frac{-2\cos 2x}{-\sin y}$ is A0 or 30°
7 (i)	$(3^n + 1)(3^n - 1) = (3^n)^2 - 1$ or $3^{2n} - 1$	B1 [1]	mark final answer	or $9^n - 1$; penalise 3^{n^2} if it looks like 3 to the power n^2 .
, í	3^n is odd $\Rightarrow 3^n + 1$ and $3^n - 1$ both even As consecutive even nos, one must be divisible by 4, so product is divisible by 8.	M1 M1 A1 [3]	3^n is odd $\Rightarrow 3^n + 1$ and $3^n - 1$ both even completion	Induction: If true for n , $3^{2n} - 1 = 8k$, so $3^{2n} = 1 + 8k$, M1 $3^{2(n+1)} - 1 = 9 \times (8k + 1) - 1 = 72k + 8 = 8(9k + 1)$ so div by 8. A1 When $n = 1$, $3^2 - 1 = 8$ div by 8, true A1(or similar with 9^n)

PMT

-				
8(i)	$f(-x) = \frac{1}{e^{-x} + e^{-(-x)} + 2}$ = f(x), [\Rightarrow f is even *] Symmetrical about Oy	M1 A1 B1 [3]	substituting $-x$ for x in $f(x)$ condone 'reflection in y -axis'	Can imply that $e^{-(-x)} = e^x$ from $f(-x) = \frac{1}{e^{-x} + e^x + 2}$ Must mention axis
(ii) or	$f'(x) = -(e^{x} + e^{-x} + 2)^{-2}(e^{x} - e^{-x})$ $= \frac{(e^{x} + e^{-x} + 2) \cdot 0 - (e^{x} - e^{-x})}{(e^{x} + e^{-x} + 2)^{2}}$	B1 M1	$d/dx (e^x) = e^x$ and $d/dx(e^{-x}) = -e^{-x}$ soi chain or quotient rule condone missing bracket on top if correct thereafter	If differentiating $\frac{e^x}{(e^x+1)^2}$ withhold A1 (unless result in (iii) proved here)
	$=\frac{(e^{-x}-e^{x})}{(e^{x}+e^{-x}+2)^{2}}$	A1 [3]	o.e. mark final answer	e.g. $\frac{1}{(e^x + e^{-x} + 2)^2} \times (e^{-x} - e^x)$
(iii)	$f(x) = \frac{e^{x}}{e^{2x} + 1 + 2e^{x}}$ $= \frac{e^{x}}{(e^{x} + 1)^{2}} *$	M1 A1 [2]	× top and bottom by e^x (correctly) condone e^{x^2} for M1 but not A1 NB AG	or $\frac{e^x}{(e^x+1)^2} = \frac{e^x}{e^{2x}+2e^x+1}$ M1, $= \frac{1}{e^x+e^{-x}+2}$ A1 condone no $e^{2x} = (e^x)^2$, for both M1 and A1
(iv)	$A = \int_{0}^{1} \frac{e^{x}}{(e^{x}+1)^{2}} dx$ let $u = e^{x} + 1$, $du = e^{x} dx$ when $x = 0$, $u = 2$; when $x = 1$, $u = e + 1$	B1 M1	correct integral and limits $\int \frac{1}{u^2} (du)$	condone no dx, must use $f(x) = \frac{e^x}{(e^x + 1)^2}$. Limits may be implied by subsequent work. If 0.231 unsupported, allow 1 st B1 only
\Rightarrow	$A = \int_{2}^{1+e} \frac{1}{u^{2}} du$	A1	$\left[-\frac{1}{u}\right]$	or by inspection $\left[\frac{k}{e^{x}+1}\right]$ M1 $\left[-\frac{1}{e^{x}+1}\right]$ A1
	$= \left[-\frac{1}{u}\right]_{2}^{1+e}$	M1	substituting correct limits (dep 1 st M1 and integration)	upper–lower; 2 and 1+e (or 3.7) for u , or 0 and 1 for x if substituted back (correctly)
	$= -\frac{1}{1+e} + \frac{1}{2} = \frac{1}{2} - \frac{1}{1+e}$	A1cao [5]	o.e. mark final answer. Must be exact Don't allow e ¹ .	e.g. $\frac{e-1}{2(1+e)}$. Can isw 0.231, which may be used as evidence of M1. Can isw numerical ans (e.g. 0.231) but not algebraic errors
(v) (Curves intersect when $f(x) = \frac{1}{4}e^x$	M1	soi	$\frac{e^{x}}{(e^{x}+1)^{2}} \text{ or } \frac{1}{e^{x}+e^{-x}+2} = \frac{1}{4}e^{x}$
\Rightarrow	$(e^{x} + 1)^{2} = 4$ $e^{x} = 1$ or -3	M1	or equivalent quadratic – must be correct	With e^{2x} or $(e^x)^2$, condone e^{x^2} , e^0
	so as $e^x > 0$, only one solution $e^x = 1 \implies x = 0$ when $x = 0$, $y = \frac{1}{4}$	A1 B1 B1 [5]	getting $e^x = 1$ and discounting other sol ⁿ x = 0 www (for this value) y = ¹ / ₄ www (for the x value)	www e.g. $e^x = -1$ [or $e^x + 1 = -2$] not possible www unless verified Do not allow unsupported. A sketch is not sufficient

9(i) When $x = 0$, $f(x) = a = 2^*$ When $x = \pi$, $f(\pi) = 2 + \sin b\pi = 3$ $\Rightarrow \sin b\pi = 1$ $\Rightarrow b\pi = \frac{1}{2}\pi$, so $b = \frac{1}{2}^*$ or $1 = a + \sin (-\pi b) (= a - \sin \pi b)$ $3 = a + \sin (\pi b)$ $\Rightarrow 2 = 2 \sin \pi b$, $\sin \pi b = 1$, $\pi b = \pi/2$, $b = \frac{1}{2}$ $\Rightarrow 3 = a + 1$ or $1 = a - 1 \Rightarrow a = 2$ (oe for b)	B1 M1 A1 [3]	NB AG 'a is the y-intercept' not enough but allow verification $(2+\sin 0 = 2)$ or when $x = -\pi$, $f(-\pi) = 2 + \sin (-b\pi) = 1$ $\Rightarrow \sin(-b\pi) = -1$ condone using degrees $\Rightarrow -b\pi = -\frac{1}{2}\pi$, $b = \frac{1}{2}$ NB AG M1 for both points substituted A1 solving for b or a A1 substituting to get a (or b)	or equiv transformation arguments : e.g. 'curve is shifted up 2 so $a = 2$ '. e.g. period of sine curve is 4π , or stretched by sf. 2 in <i>x</i> -direction (not squeezed or squashed by $\frac{1}{2}$) $\Rightarrow b = \frac{1}{2}$ If verified allow M1A0 If $y = 2 + \frac{1}{2} x$ verified at two points, SC2 A sequence of sketches starting from $y = \sin x$ showing clearly the translation and the stretch (in either order) can earn full marks
(ii) $f'(x) = \frac{1}{2} \cos \frac{1}{2} x$ $\Rightarrow f'(0) = \frac{1}{2}$ Maximum value of $\cos \frac{1}{2} x$ is 1 \Rightarrow max value of gradient is $\frac{1}{2}$	M1 A1 A1 M1 A1 [5]		
(iii) $y = 2 + \sin \frac{1}{2} x x \leftrightarrow y$ $x = 2 + \sin \frac{1}{2} y$ $\Rightarrow x - 2 = \sin \frac{1}{2} y$ $\Rightarrow \arcsin(x - 2) = \frac{1}{2} y$ $\Rightarrow y = f^{-1}(x) = 2\arcsin(x - 2)$ Domain $1 \le x \le 3$ Range $-\pi \le y \le \pi$ Gradient at (2, 0) is 2	M1 A1 A1 B1 B1 B1ft [6]	Attempt to invert formula or $\operatorname{arcsin}(y-2) = \frac{1}{2} x$ must be $y = \dots$ or $f^{-1}(x) = \dots$ or $[1, 3]$ or $[-\pi, \pi]$ or $-\pi \le f^{-1}(x) \le \pi$ ft their answer in (ii) (except ±1) 1/their $\frac{1}{2}$	viz solve for x in terms of y or vice-versa – one step enough condone use of a and b in inverse function, e.g. $[\arcsin(x - a)]/b$ or $\sin^{-1}(y - 2)$ condone no bracket for 1 st A1 only or $2\sin^{-1}(x - 2)$, condone f'(x), must have bracket in final ans but not $1 \le y \le 3$ but not $-\pi \le x \le \pi$. Penalise <'s (or '1 to 3', ' $-\pi$ to π ') once only or by differentiating $\arcsin(x - 2)$ or implicitly
(iv) $A = \int_{0}^{\pi} (2 + \sin \frac{1}{2}x) dx$ $= \left[2x - 2\cos \frac{1}{2}x \right]_{0}^{\pi}$ $= 2\pi - (-2)$ $= 2\pi + 2 (= 8.2831)$	M1 M1 A1 A1cao [4]	correct integral and limits $\begin{bmatrix} 2x - k \cos \frac{1}{2}x \end{bmatrix}$ where <i>k</i> is positive <i>k</i> = 2 answers rounding to 8.3	soi from subsequent work, condone no dx but not 180 Unsupported correct answers score 1 st M1 only.

PMT

Mark Scheme

Q	Juestion	Answer	Marks	Guid	lance
1		$\int_{1}^{2} \frac{1}{\sqrt{3x-2}} dx = \left[\frac{2}{3}(3x-2)^{1/2}\right]_{1}^{2}$	M1 A2	$[k (3x-2)^{1/2}] k = 2/3$	
		$= \frac{2}{3} \cdot 2 - \frac{2}{3} \cdot 1$ $= \frac{2}{3} \cdot 3$	M1dep A1	substituting limits dep 1 st M1 NB AG	
		OR $u = 3x - 2 \Rightarrow \frac{du}{dx} = 3$ $\Rightarrow \int_{1}^{2} \frac{1}{\sqrt{3x - 2}} dx = \int_{1}^{4} \frac{1}{\sqrt{u}} \cdot \frac{1}{3} du$	M1 A1	$\int \frac{1}{\sqrt{u}} \times \frac{1}{3} (du)$	or $w^2 = 3x - 2 \Rightarrow \int \frac{1}{w}$ × 2/3 w (dw)
		$= \left[\frac{2}{3}u^{1/2}\right]_{1}^{4} = \frac{2}{3} \cdot 2 - \frac{2}{3} \cdot 1$ $= \frac{2}{3} \cdot 3$	A1 M1dep A1	$\begin{bmatrix} \frac{2}{3}u^{1/2} \end{bmatrix}$ o.e. substituting correct limits dep 1 st M1 NB AG	$\begin{bmatrix} \frac{2}{3}w \end{bmatrix}$ upper – lower, 1 to 4 for <i>u</i> or 1 to 2 for <i>w</i> or substituting back (correctly) for <i>x</i> and using 1
2			[5]		to 2
2		$ 2x + 1 > 4 \Rightarrow 2x + 1 > 4, x > 3/2 or 2x + 1 < -4, x < -21/2$	B1 M1 A1 [3]	x > 3/2 mark final ans; if from $ 2x > 3$ B0 o.e., e.g. $-(2x + 1) > 4$ (or $2x + 1 = -4$) if $ 2x + 1 < -4$, M0 x < -21/2 mark final ans allow 3 for correct unsupported answers	by squaring: $4x^2 + 4x - 15 > (\text{or} =) 0 \text{ M1}$ $x > 3/2 \text{ A1}$ $x < -2\frac{1}{2} \text{ A1}$ Penalise \geq and \leq once only $3/2 < x < -2\frac{1}{2} \text{ SC2}$ (mark final ans)
3		$e^{2y} = 5 - e^{-x}$ $\Rightarrow 2e^{2y} \frac{dy}{dx} = e^{-x}$ $dy = 2e^{-x}$	B1 B1	$2e^{2y}\frac{dy}{dx} = \dots$ $= e^{-x}$	or $y = \ln \sqrt{(5 - e^{-x})}$ o.e (e.g. ¹ / ₂ ln(5 - e^{-x}))B1 $\Rightarrow dy/dx = e^{-x}/[2(5 - e^{-x})]$ o.e. B1 (but must be correct)
		$\Rightarrow \frac{d y}{d x} = \frac{e^{-x}}{2 e^{2y}}$ At (0, ln2) $\frac{d y}{d x} = \frac{e^0}{2 e^{2\ln 2}}$ $= \frac{1}{8}$	M1dep A1cao [4]	substituting $x = 0$, $y = \ln 2$ into their dy/dx dep 1 st B1 – allow one slip	or substituting $x = 0$ into their correct dy/dx

0	Duestion	n	Answer	Marks	Guidan	ce
4	(i)		$1 - 9a^2 = 0$	M1	or $1 - 9x^2 = 0$	$\sqrt{(1-9a^2)} = 1 - 3a$ is M0
	(-)		$\Rightarrow a^2 = 1/9 \Rightarrow a = 1/3$	A1	or 0.33 or better $\sqrt{(1/9)}$ is A0	not $a = \pm 1/3$ nor $x = 1/3$
				[2]		
4	(ii)		Range $0 \le y \le 1$	B1	or $0 \le f(x) \le 1$ or $0 \le f \le 1$, not $0 \le x \le 1$	allow also [0,1], or 0 to 1 inclusive,
					$0 \le y \le \sqrt{1}$ is B0	but not 0 to 1 or (0,1)
				[1]		
4	(iii)			M1	curve goes from $x = -3a$ to $x = 3a$	must have evidence of using s.f. 3
					(or -1 to 1)	allow also if s.f.3 is stated and
						stretch is reasonably to scale
			/ _1_ \	M1	vertex at origin	
				A1	curve, 'centre' $(0,-1)$, from $(-1,-1)$ to	allow from $(-3a, -1)$ to $(3a, -1)$
			I		(1, -1) (y-coords of -1 can be inferred from vertex at O and correct scaling)	provided $a = 1/3$ or $x = [\pm] 1/3$ in (i)
				[3]	vertex at O and correct scanng)	A0 for badly inconsistent scale(s)
5	(i)		When $t = 0$, $P = 7 - 2 = 5$, so 5 (million)	B1		
5	(1)		In the long term $e^{-kt} \rightarrow 0$	M1	allow substituting a large number for t (for	
			So long-term population is 7 (million)	Al	both marks)	allow 7 unsupported
			bo long term population is / (inition)	[3]	, ,	11
5	(ii)		$P = 7 - 2e^{-kt}$			
			When $t = 1, P = 5.5$			
			$\Rightarrow 5.5 = 7 - 2e^{-k}$	M1		
			\Rightarrow e ^{-k} = (7 - 5.5)/2 = 0.75			
			$\Rightarrow -k = \ln((7 - 5.5)/2)$	M1	re-arranging and anti-logging – allow 1 slip	but penalise negative lns,
					(e.g. arith of 7 – 5.5, or <i>k</i> for $-k$)	e.g. $\ln(-1.5) = \ln(-2) - k$
					or $\ln 2 - k = \ln 1.5$ o.e.	
			$\Rightarrow k = 0.288 \text{ (3 s.f.)}$	A1	0.3 or better	rounding from a correct value of
					allow $\ln(4/3)$ or $-\ln(3/4)$ if final ans	k = 0.2876820725, penalise
						truncation, and incorrect work with
				[3]		negatives

	Questior	Answer	Marks	Guidan	ce
6	(i)	$y = 2 \operatorname{arc} \sin \frac{1}{2} = 2 \times \frac{\pi}{6}$ $= \frac{\pi}{3}$	M1 A1 [2]	$y = 2 \arcsin \frac{1}{2}$ must be in terms of π – can isw approximate answers	1.047 implies M1
6	(ii)	$y = 2 \arcsin x \qquad x \leftrightarrow y$ $\Rightarrow \qquad x = 2 \arcsin y$ $\Rightarrow \qquad x/2 = \arcsin y$ $\Rightarrow \qquad y = \sin (x/2) [\operatorname{so} g(x) = \sin (x/2)]$ $\Rightarrow \qquad dy/dx = \frac{1}{2} \cos(\frac{1}{2}x)$ At Q, $x = \frac{\pi}{3}$ $\Rightarrow \qquad dy/dx = \frac{1}{2} \cos \frac{\pi}{6} = \frac{1}{2} \sqrt{3}/2 = \sqrt{3}/4$ $\Rightarrow \qquad \text{gradient at P} = 4/\sqrt{3}$	M1 A1 A1cao M1 A1 B1 ft [6]	or $y/2 = \arcsin x$ but must interchange x and y at some stage substituting their $\pi/3$ into their derivative must be exact, with their $\cos(\pi/6)$ evaluated o.e. e.g. $4\sqrt{3}/3$ but must be exact ft their $\sqrt{3}/4$ unless 1	or f'(x) = $2/\sqrt{(1-x^2)}$ f'($\frac{1}{2}$) = $2/\sqrt{34}$ = $4/\sqrt{3}$ cao
7	(i)	s(-x) = f(-x) + g(-x) = -f(x) + -g(x) = -(f(x) + g(x)) = -s(x) (so s is odd)	M1 A1 [2]	must have $s(-x) = \dots$	
7	(ii)	p(-x) = f(-x)g(-x) =(-f(x)) × (-g(x)) = f(x)g(x) = p(x) so p is even	M1 A1 [2]	must have $p(-x) =$ Allow SC1 for showing that $p(-x) = p(x)$ using two specific odd functions, but in this case they must still show that p is even	e.g. $f(x) = x$, $g(x) = x^3$, $p(x) = x^4$ $p(-x) = (-x)^4 = x^4 = p(x)$, so p even condone f and g being the same function

(Question	Answer	Marks	Guid	lance
8	(i)	$\frac{d y}{d x} = \sin 2x + 2x \cos 2x$ $\frac{d y}{d x} = 0 \text{ when } \sin 2x + 2x \cos 2x = 0$ $\Rightarrow \frac{\sin 2x + 2x \cos 2x}{\cos 2x} = 0$ $\Rightarrow \tan 2x + 2x = 0 *$	M1 A1 M1 A1	$d/dx(\sin 2x) = 2\cos 2x \text{ soi}$ cao, mark final answer equating their derivative to zero, provided it has two terms must show evidence of division by $\cos 2x$	can be inferred from $dy/dx = 2x \cos 2x$ e.g. $dy/dx = \tan 2x + 2x$ is A0
8	(ii)	At P, $x \sin 2x = 0$ $\Rightarrow \sin 2x = 0, \ 2x = (0), \ \pi \Rightarrow x = \pi/2$	[4] M1 A1	$x = \pi/2$	Finding $x = \pi/2$ using the given line equation is M0
		At P, $dy/dx = \sin \pi + 2(\pi/2) \cos \pi = -\pi$ Eqn of tangent: $y - 0 = -\pi(x - \pi/2)$ $\Rightarrow \qquad y = -\pi x + \pi^2/2$ $\Rightarrow \qquad 2\pi x + 2y = \pi^2 *$	B1 ft M1 A1	ft their $\pi/2$ and their derivative substituting 0, their $\pi/2$ and their $-\pi$ into $y - y_1 = m(x - x_1)$ NB AG	or their $-\pi$ into $y = mx+c$, and then evaluating c : $y = (-\pi)x + c$, $0 = (-\pi)(\pi/2) + c$ M1 $\Rightarrow c = \pi^2/2$
		When $x = 0$, $y = \pi^2/2$, so Q is $(0, \pi^2/2)$	M1A1 [7]	can isw inexact answers from $\pi^2/2$	$\Rightarrow y = -\pi x + \pi^2/2 \Rightarrow 2\pi x + 2y = \pi^2 * A1$
8	(iii)	Area = triangle OPQ – area under curve Triangle OPQ = $\frac{1}{2} \times \frac{\pi}{2} \times \frac{\pi^2}{2} [= \frac{\pi^3}{8}]$	M1 B1cao	soi (or area under PQ – area under curve allow art 3.9 $\int_{0}^{\pi/2}$	area under line may be expressed in integral form or using integral: $\left(\frac{1}{2}\pi^2 - \pi x\right) dx = \left[\frac{1}{2}\pi^2 x - \frac{1}{2}\pi x^2\right]_0^{\pi/2} = \frac{\pi^3}{4} - \frac{\pi^3}{8} \left[=\frac{\pi^3}{8}\right]$
		Parts: $u = x$, $dv/dx = \sin 2x$ $du/dx = 1$, $v = -\frac{1}{2}\cos 2x$ $\int_{0}^{\pi/2} x \sin 2x dx = \left[-\frac{1}{2}x \cos 2x \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} -\frac{1}{2}\cos 2x dx$	M1 A1ft	condone $v = k \cos 2x \sin x$ ft their $v = -\frac{1}{2} \cos 2x$, ignore limits	<i>v</i> can be inferred from their ' <i>uv</i> '
		$= \left[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x \right]_{0}^{\pi/2}$	A1	$[-\frac{1}{2}x\cos 2x + \frac{1}{4}\sin 2x]$ o.e., must be correct at this stage, ignore limits	
		$= -\frac{1}{4}\pi\cos\pi + \frac{1}{4}\sin\pi - (-0\cos0 + \frac{1}{4}\sin0) = \frac{1}{4}\pi[-0]$ So shaded area = $\pi^3/8 - \pi/4 = \pi(\pi^2 - 2)/8^*$	A1cao A1 [7]	(so dep previous A1) NB AG must be from fully correct work	

	Question	n	Answer	Marks	Guida	nce
9	(i)		(A) (0, 6) and (1, 4) (B) (-1, 5) and (0, 4)	B1B1 B1B1 [4]	Condone P and Q incorrectly labelled (or unlabelled)	
9	(ii)		$f'(x) = \frac{(x+1) \cdot 2x - (x^2 + 3) \cdot 1}{(x+1)^2}$ $f'(x) = 0 \Longrightarrow 2x (x+1) - (x^2 + 3) = 0$ $\Rightarrow x^2 + 2x - 3 = 0$ $\Rightarrow (x-1)(x+3) = 0$ $\Rightarrow x = 1 \text{ or } x = -3$ When $x = -3$, $y = 12/(-2) = -6$ so other TP is $(-3, -6)$	M1 A1 M1 A1dep B1B1cao [6]	Quotient or product rule consistent with their derivatives, condone missing brackets correct expression their derivative = 0 obtaining correct quadratic equation (soi) dep 1^{st} M1 but withhold if denominator also set to zero must be from correct work (but see note re quadratic)	PR: $(x^2+3)(-1)(x+1)^{-2} + 2x(x+1)^{-1}$ If formula stated correctly, allow one substitution error. condone missing brackets if subsequent working implies they are intended Some candidates get $x^2 + 2x + 3$, then realise this should be $x^2 + 2x - 3$, and correct back, but not for every occurrence. Treat this sympathetically. Must be supported, but -3 could be verified by substitution into correct derivative
9	(iii)		$f(x-1) = \frac{(x-1)^2 + 3}{x-1+1}$ $= \frac{x^2 - 2x + 1 + 3}{x-1+1}$ $= \frac{x^2 - 2x + 4}{x} = x - 2 + \frac{4}{x} *$	M1 A1 A1 [3]	substituting $x - 1$ for both x 's in f NB AG	allow 1 slip for M1
9	(iv)		$= \frac{x^2 - 2x + 4}{x} = x - 2 + \frac{4}{x} *$ $\int_a^b (x - 2 + \frac{4}{x}) dx = \left[\frac{1}{2}x^2 - 2x + 4\ln x\right]_a^b$ $= (\frac{1}{2}b^2 - 2b + 4\ln b) - (\frac{1}{2}a^2 - 2a + 4\ln a)$ Area is $\int_0^1 f(x) dx$ So taking $a = 1$ and $b = 2$ area = $(2 - 4 + 4\ln 2) - (\frac{1}{2}a - 2a + 4\ln 1)$ $= 4\ln 2 - \frac{1}{2}$	B1 M1 A1 M1 A1 cao [5]	$\left[\frac{1}{2}x^2 - 2x + 4\ln x\right]$ F(b) – F(a) condone missing brackets oe (mark final answer) must be simplified with ln 1 = 0	F must show evidence of integration of at least one term or $f(x) = x + 1 - 2 + 4/(x+1)$ $A = \int_0^1 f(x) dx = \left[\frac{1}{2}x^2 - x + 4\ln(1+x)\right]_0^1 M1$ $= \frac{1}{2} - 1 + 4\ln 2 = 4\ln 2 - \frac{1}{2} A1$

GCE

Mathematics (MEI)

Advanced GCE

Unit 4753: Methods for Advanced Mathematics

Mark Scheme for January 2013

PMT

4753/01

January 2013

Question	Answer	Marks		Guidance
1 (i)	$y = e^{-x} \sin 2x$	M1	Product rule	$u \times \text{their } v' + v \times \text{their } u'$
	$\Rightarrow dy/dx = e^{-x} \cdot 2\cos 2x + (-e^{-x})\sin 2x$	B1	$d/dx(\sin 2x) = 2\cos 2x$	
		A1	Any correct expression	but mark final answer
		[3]		
1 (ii)	$dy/dx = 0 \text{ when } 2\cos 2x - \sin 2x = 0$	M1	ft their dy/dx but must eliminate e^{-x}	derivative must have 2 terms
	$\Rightarrow 2 = \tan 2x$	M1	$\sin 2x / \cos 2x = \tan 2x \text{ used}$	substituting ¹ / ₂ arctan 2 into their deriv M0
	$\Rightarrow 2x = \arctan 2$		$[\text{or } \tan^{-1}]$	(unless $\cos 2x = 1/\sqrt{5}$ and $\sin 2x = 2/\sqrt{5}$ found)
	\Rightarrow $x = \frac{1}{2} \arctan 2 *$	A1	NB AG	must show previous step
		[3]		
2 (i)	$2x + 4y\frac{\mathrm{d}y}{\mathrm{d}x} = 4$	M1	$4y\frac{\mathrm{d}y}{\mathrm{d}x}$	Rearranging for <i>y</i> and differentiating explicitly is M0
		A1	correct equation	Ignore superfluous $dy/dx = \dots$ unless used subsequently
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4 - 2x}{4y}$	A1	o.e., but mark final answer	
		[3]		
2 (ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies x = 2$	B1dep	dep correct derivative	
	\Rightarrow 4 + 2y ² = 8 \Rightarrow y ² = 2, y = $\sqrt{2}$ or $-\sqrt{2}$	B1B1	$\sqrt{2}, -\sqrt{2}$	can isw, penalise inexact answers of ± 1.41 or better once only
		[3]		-1 for extra solutions found from using $y = 0$
3	$1 < x < 3 \Longrightarrow$ $-1 < x - 2 < 1$		oe	
	$\Rightarrow x-2 < 1$	B1 B1	[or $a = 2$ and $b = 1$]	
		[2]		

PMT

C	uestic	on	Answer	Marks		Guidance
4	(i)		$\theta = a - b \mathrm{e}^{-kt}$			
			When $t = 0$, $\theta = 15 \implies 15 = a - b$	M1	15 = a - b	must have $e^0 = 1$
			When $t = \infty$, $\theta = 100 \Rightarrow 100 = a$	B1	a = 100	
			$\Rightarrow b = 85$	A1cao		
			When $t = 1$, $\theta = 30 \implies 30 = 100 - 85e^{-k}$	M1	$30 = a - b e^{-k}$	(need not substitute for a and b)
			\Rightarrow e ^{-k} = 70/85			
			\Rightarrow $-k = \ln (70/85) = -0.194(156)$	M1	Re-arranging and taking lns	allow $-k = \ln[(a - 30)/b]$ ft on <i>a</i> , <i>b</i>
			$\Rightarrow k = 0.194$	A1	0.19 or better, or -ln (70/85) oe	mark final ans
				[6]		
4	(ii)		$80 = 100 - 85 e^{-0.194t}$	M1	ft their values for a, b and k	but must substitute values
			\Rightarrow e ^{-0.194t} = 20/85			
			\Rightarrow $t = -\ln(4/17) / 0.194 = 7.45 \text{ (min)}$	A1	art 7.5 or 7 min 30s or better	
				[2]		
5	(i)		$\mathrm{d}F/\mathrm{d}v = -25 \ v^{-2}$	M1	$d/dv(v^{-1}) = -v^{-2} \operatorname{soi}$	
				A1	$-25 v^{-2}$ o.e mark final ans	
				[2]		
5	(ii)		When $v = 50$, $dF/dv = -25/50^2$ (= -0.01)	B1	$-25/50^{2}$	
			$\frac{\mathrm{d}F}{\mathrm{d}t} = \frac{\mathrm{d}F}{\mathrm{d}v} \cdot \frac{\mathrm{d}v}{\mathrm{d}t}$	M1	o.e.	e.g. $\frac{\mathrm{d}F}{\mathrm{d}v} = \frac{\mathrm{d}F}{\mathrm{d}t} / \frac{\mathrm{d}v}{\mathrm{d}t}$
			$= -0.01 \times 1.5 = -0.015$	A1cao	o.e. e.g3/200 isw	
				[3]		

Question	Answer	Marks		Guidance
6	Let $u = 1 + x \implies \int_{0}^{3} x(1+x)^{-1/2} dx = \int_{1}^{4} (u-1)u^{-1/2} du$	M1	$\int (u-1)u^{-1/2}(\mathrm{d} u)^*$	condone no d <i>u</i> , missing bracket, ignore limits
	$=\int_{1}^{4} (u^{1/2} - u^{-1/2}) \mathrm{d} u$	A1	$\int (u^{1/2} - u^{-1/2})(\mathrm{d}u)$	
	$= \left[\frac{2}{3}u^{3/2} - 2u^{1/2}\right]_{1}^{4}$	A1	$\left[\frac{2}{3}u^{3/2} - 2u^{1/2}\right]$ o.e.	e.g. $\left[\frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2}\right]$; ignore limits
	=(16/3-4)-(2/3-2)	M1dep	upper–lower dep 1 st M1 and integration	with correct limits e.g. 1, 4 for u or 0, 3 for x
	$=2\frac{2}{3}$	A1cao	or 2.6 but must be exact	or using $w = (1+x)^{1/2} \Rightarrow$ $\int \frac{(w^2 - 1)2w}{w} (dw) M1$
	OR Let $u = x$, $v' = (1 + x)^{-1/2}$	M1		$= \int 2(w^2 - 1)(dw) A1 = \left[\frac{2}{3}w^3 - 2w\right] A1$
	$\Rightarrow u'=1, v=2(1+x)^{1/2}$	A1		upper–lower with correct limits ($w = 1,2$) M1
	$\Rightarrow \int_{0}^{3} x(1+x)^{-1/2} dx = \left[2x(1+x)^{1/2} \right]_{0}^{3} - \int_{0}^{3} 2(1+x)^{1/2} dx$	A1	ignore limits, condone no dx	8/3 A1 cao
	$= \left[2x(1+x)^{1/2} - \frac{4}{3}(1+x)^{3/2}\right]_{0}^{3}$	A1	ignore limits	*If $\int_{1}^{4} (u-1)u^{-1/2} du$ done by parts:
	$= (2 \times 3 \times 2 - 4 \times 8/3) - (0 - 4/3)$ $= 2\frac{2}{3}$	A1cao	or 2.6 but must be exact	$2u^{1/2}(u-1) - \int 2u^{1/2} du A1$ [$2u^{1/2}(u-1) - 4u^{3/2}/3$] A1 substituting correct limits M1 8/3 A1cao
		[5]		

Q	uestior	Answer	Marks		Guidance
7	(i)	$3^5 + 2 = 245$ [which is not prime]	M1	Attempt to find counter- example	If A0, allow M1 for $3^n + 2$ correctly
			A1	correct counter-example identified	evaluated for 3 values of <i>n</i>
			[2]		
7	(ii)	$(3^0 = 1), 3^1 = 3, 3^2 = 9, 3^3 = 27, 3^4 = 81, \dots$	M1	Evaluate 3^n for $n = 0$ to 4 or 1 to 5	allow just final digit written
		so units digits cycle through 1, 3, 9, 7, 1, 3, so cannot be a '5'. OR	A1		
		3^n is not divisible by 5	B1		
		all numbers ending in '5' are divisible by 5. so its last digit cannot be a '5'	B1	must state conclusion for B2	
8	(i)	translation in the <i>x</i> -direction	M1	allow 'shift', 'move'	If just vectors given withhold one 'A' mark only
		of $\pi/4$ to the right	A1	oe (eg using vector)	'Translate $\binom{\pi/4}{1}$ ' is 4 marks; if this is followed by an additional incorrect transformation, SC M1M1A1A0
		translation in y-direction	M1	allow 'shift', 'move'	$\begin{pmatrix} \pi/4 \\ 1 \end{pmatrix}$ only is M2A1A0
		of 1 unit up.	A1 [4]	oe (eg using vector)	

Q	uestic	on	Answer	Marks		Guidance
8	(ii)		$g(x) = \frac{2\sin x}{\sin x + \cos x}$			(Can deal with num and denom separately)
			$g'(x) = \frac{(\sin x + \cos x)2\cos x - 2\sin x(\cos x - \sin x)}{(\sin x + \cos x)^2}$	M1	Quotient (or product) rule consistent with their derivs	$\frac{vu'-uv'}{v^2}$; allow one slip, missing brackets
			$=\frac{2\sin x \cos x + 2\cos^2 x - 2\sin x \cos x + 2\sin^2 x}{(\sin x + \cos x)^2}$	A1	Correct expanded expression (could leave the '2' as a factor)	$\frac{uv'-vu'}{v^2}$ is M0. Condone $\cos x^2$, $\sin x^2$
			$=\frac{2\cos^2 x + 2\sin^2 x}{(\sin x + \cos x)^2} = \frac{2(\cos^2 x + \sin^2 x)}{(\sin x + \cos x)^2}$			
			$=\frac{2}{\left(\sin x + \cos x\right)^2} *$	A1	NB AG	must take out 2 as a factor or state $sin^2 x + cos^2 x = 1$
			When $x = \pi/4$, g '($\pi/4$) = 2/($1/\sqrt{2} + 1/\sqrt{2}$) ²	M1	substituting $\pi/4$ into correct deriv	
			= 1	A1		
			$f'(x) = \sec^2 x$	M1	o.e., e.g. $1/\cos^2 x$	
			$f'(0) = \sec^2(0) = 1$, [so gradient the same here]	A1		
				[7]		

Q	uestic	on	Answer	Marks	Guidance		
8	(iii)		$\int_0^{\pi/4} \mathbf{f}(x) \mathrm{d} x = \int_0^{\pi/4} \frac{\sin x}{\cos x} \mathrm{d} x$ let $u = \cos x$, $\mathrm{d}u = -\sin x \mathrm{d}x$				
			when $x = 0$, $u = 1$, when $x = \pi/4$, $u = 1/\sqrt{2}$				
			$=\int_{1}^{1/\sqrt{2}}-\frac{1}{u}\mathrm{d}u$	M1	substituting to get $\int -1/u (du)$	ignore limits here, condone no du but not dx allow $\int 1/u - du$	
			$=\int_{1/\sqrt{2}}^{1}\frac{1}{u}\mathrm{d}u \ *$	A1	NB AG	but for A1 must deal correctly with the –ve sign by interchanging limits	
			$= \left[\ln u\right]_{1/\sqrt{2}}^{1}$	M1	[ln <i>u</i>]		
			$= \ln 1 - \ln (1/\sqrt{2})$				
			$= \ln \sqrt{2} = \ln 2^{1/2} = \frac{1}{2} \ln 2$	A1	$\ln \sqrt{2}$, $\frac{1}{2} \ln 2$ or $-\ln(1/\sqrt{2})$	mark final answer	
				[4]			
8	(iv)		Area = area in part (iii) translated up 1 unit.	M1	soi from $\pi/4$ added	or	
			So = $\frac{1}{2} \ln 2 + 1 \times \frac{\pi}{4} = \frac{1}{2} \ln 2 + \frac{\pi}{4}$.	A1cao	oe (as above)	$\int_{\pi/4}^{\pi/2} (1 + \tan(x - \pi/4)) dx = [x + \ln \sec(x - \pi/4)]_{\pi/4}^{\pi/2}$ = $\pi/2 + \ln\sqrt{2} - \pi/4 = \pi/4 + \ln\sqrt{2}$ B2	
				[2]		$=\pi/2 + \ln\sqrt{2} - \pi/4 = \pi/4 + \ln\sqrt{2}$ B2	
9	(i)		At P(a, a) g(a) = a so $\frac{1}{2}(e^a - 1) = a$	[2]			
Í	(1)		$\Rightarrow e^{a} = 1 + 2a^{*}$	B1	NB AG		
			\rightarrow $c = 1 + 2u$	[1]			
9	(ii)		$A = \int_0^a \frac{1}{2} (e^x - 1) dx$	M1	correct integral and limits	limits can be implied from subsequent work	
			$=\frac{1}{2}\left[\mathrm{e}^{x}-x\right]_{0}^{a}$	B 1	integral of $e^x - 1$ is $e^x - x$		
			$= \frac{1}{2} (e^{a} - a - e^{0})$	A1			
			$=\frac{1}{2}(1+2a-a-1)=\frac{1}{2}a*$	A1	NB AG		
			area of triangle = $\frac{1}{2}a^2$	B1			
			area between curve and line = $\frac{1}{2}a^2 - \frac{1}{2}a$	B1cao [6]	mark final answer		

January	2013
---------	------

Qı	uestio	n Answer	Marks		Guidance
9	(iii)	$y = \frac{1}{2}(e^x - 1)$ swap x and y x = $\frac{1}{2}(e^y - 1)$			
		$\Rightarrow 2x = e^{y} - 1$	M1	Attempt to invert – one valid step	merely swapping x and y is not 'one step'
		$\Rightarrow 2x + 1 = e^{y}$	A1		
		\Rightarrow $\ln(2x+1) = y *$	A1	$y = \ln(2x + 1)$ or $g(x) = \ln(2x + 1)$ AG	apply a similar scheme if they start with $g(x)$ and invert to get $f(x)$.
		\Rightarrow g(x) = ln(2x + 1)			or g f(x) = g(($e^x - 1$)/2) M1
		Sketch: recognisable attempt to reflect in $y = x$	M1	through O and (a, a)	$= \ln(1 + e^{x} - 1) = \ln(e^{x}) A1 = x A1$
		Good shape	A1	no obvious inflexion or TP, extends to third quadrant, without gradient becoming too negative	similar scheme for fg See appendix for examples
			[5]		
9	(iv)	$f'(x) = \frac{1}{2} e^x$	B1		
		g'(x) = 2/(2x+1)	M1	1/(2x + 1) (or $1/u$ with u = 2x + 1)	
			A1	× 2 to get $2/(2x + 1)$	
		g'(a) = $2/(2a + 1)$, f'(a) = $\frac{1}{2}$ e ^a	B1	either $g'(a)$ or $f'(a)$ correct soi	
		so $g'(a) = 2/e^a$ or $f'(a) = \frac{1}{2}(2a+1)$	M1	substituting $e^a = 1 + 2a$	either way round
		$= 1/(\frac{1}{2}e^{a}) = (2a+1)/2$	A1	establishing f '(a) = 1/ g '(a)	
		[= 1/f'(a)] $[= 1/g'(a)]$			
		tangents are reflections in $y = x$	B1	must mention tangents	
			[7]		

Mark Scheme

APPENDIX 1

Exemplar marking of 9(iii)

M1A1

M1A0 (see $3^{rd} q$)

(x)=y

M1A0 (3rd q bends back)

Q	uestion	Answer	Marks	Guidance
1	(i)	$a = \frac{1}{2}$	B1	or 0.5
		b = 1	B1	
			[2]	
1	(ii)	$\frac{1}{2} x+1 = x $		
		$\Rightarrow \frac{1}{2}(x+1) = x,$	M1	o.e. ft their $a (\neq 0)$, b (but allow recovery to correct values)
				or verified by subst $x = 1$, $y = 1$ into $y = \frac{1}{2} x + 1 $ and $y = x $
		$\Rightarrow x = 1, y = 1$	A1	unsupported answers M0A0
		or $\frac{1}{2}(x+1) = -x$,	M1	o.e., ft their a. b; or verified by subst $(-1/3, 1/3)$ into $y = \frac{1}{2} x+1 $ and $y = x $
		$\Rightarrow x = -1/3, y = 1/3$	A1	or 0.33, -0.33 or better unsupported answers M0A0
		or		
		$\frac{1}{4}(x+1)^2 = x^2$	M1	ft their a and b
		$\Rightarrow 3x^2 - 2x - 1 = 0$	M1ft	obtaining a quadratic = 0,ft their previous line, but must have an x^2 term
		$\Rightarrow x = -1/3 \text{ or } 1$	A1	SC3 for $(1, 1)$ $(-1/3, 1/3)$ and one or more additional points
		y = 1/3 or 1	A1	
			[4]	
2	(i)	$n^3 - n = n(n^2 - 1)$	B 1	two correct factors
		= n(n-1)(n+1)	B1	
			[2]	
2	(ii)	n-1, n and $n+1$ are consecutive integers	B1	
		so at least one is even, and one is div by 3	B1	
		$[\Rightarrow n^3 - n \text{ is div by 6}]$	[2]	
3	(i)	Range is $-1 \le y \le 3$	M1	-1, 3
			A1	$-1 \le y \le 3 \text{ or } -1 \le f(x) \le 3 \text{ or } [-1, 3] \text{ (not } -1 \text{ to } 3, -1 \le x \le 3, -1 < y < 3 \text{ etc})$
			[2]	

Qı	lestion	n	Answer	Marks	Guidance
3	(ii)		$y = 1 - 2\sin x \ x \leftrightarrow y$		[can interchange x and y at any stage]
			$x = 1 - 2\sin y \Longrightarrow x - 1 = -2\sin y$	M1	attempt to re-arrange
			\Rightarrow sin y = (1 - x)/2	A1	o.e. e.g. $\sin y = (x - 1)/(-2)$ (or $\sin x = (y - 1)/(-2)$)
			$\Rightarrow y = \arcsin\left[(1-x)/2\right]$	A1	or $f^{-1}(x) = \arcsin [(1 - x)/2]$, not x or $f^{-1}(y) = \arcsin [1 - y)/2]$ (viz must have swapped x and y for final 'A' mark).
				[3]	$\arcsin [(x-1)/-2]$ is A0
3	(iii)		$f'(x) = -2\cos x$	M1	condone 2cos x
			\Rightarrow f'(0) = -2	A1	cao
			\Rightarrow gradient of $y = f^{-1}(x)$ at $(1, 0) = -\frac{1}{2}$	A1	not 1/- 2
				[3]	
4			$V = \pi h^2 \Longrightarrow dV/dh = 2\pi h \Longrightarrow$	M1A1	if derivative $2\pi h$ seen without $dV/dh = \dots$ allow M1A0
			$dV/dt = dV/dh \times dh/dt$	M1	soi ; o.e. – any correct statement of the chain rule using V , h and t – condone use of a letter other than t for time here
			$\mathrm{d}V/\mathrm{d}t = 10$	B 1	soi; if a letter other than t used (and not defined) B0
			$dh/dt = 10/(2\pi \times 5) = 1/\pi$	A1	or 0.32 or better, mark final answer
				[5]	
5			$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right) = \frac{1}{2}(\ln(2x-1) - \ln(2x+1))$	M1	use of $\ln(a/b) = \ln a - \ln b$
				M1	use of $\ln\sqrt{c} = \frac{1}{2} \ln c$
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\frac{2}{2x-1} - \frac{2}{2x+1} \right)$	A1	o.e.; correct expression (if this line of working is missing, M1M1A0A0)
			$=\frac{1}{2x-1}-\frac{1}{2x+1}$ *	A1	NB AG
				[4]	for alternative methods, see additional solutions

Mark Scheme

O	iestior	Answer	Marks	Guidance
6			M1	$k \ln(3 + \cos 2x)$
U		$\int_{0}^{\pi/2} \frac{\sin 2x}{3 + \cos 2x} dx = \left[-\frac{1}{2} \ln(3 + \cos 2x) \right]_{0}^{\pi/2}$	A2	$-\frac{1}{2}\ln(3 + \cos 2x)$
		$or \ u = 3 + \cos 2x, \ du = -2\sin 2x \ dx$	M1	o.e. e.g. $du/dx = -2\sin 2x$ or if $v = \cos 2x$, $dv = -2\sin 2x dx$ o.e. condone $2\sin 2x dx$
		$\int_{0}^{\pi/2} \frac{\sin 2x}{3 + \cos 2x} dx = \int_{4}^{2} -\frac{1}{2u} du$	A1	$\int -\frac{1}{2u} du$, or if $v = \cos 2x$, $\int -\frac{1}{2(3+v)} dv$
		$=\left[-\frac{1}{2}\ln u\right]_{4}^{2}$	A1	$[-\frac{1}{2}\ln u]$ or $[-\frac{1}{2}\ln(3+v)]$ ignore incorrect limits
		$= -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 4$	A1	from correct working o.e. e.g. $-\frac{1}{2}\ln(3+\cos(2.\pi/2)) + \frac{1}{2}\ln(3+\cos(2.0))$
		$= \frac{1}{2} \ln (4/2)$		o.e. required step for final A1, must have evaluated to 4 and 2 at this stage
		$= \frac{1}{2} \ln 2 *$	A1	NB AG
			[5]	
7	(i)	$f(-x) = \frac{2(-x)}{1 - (-x)^2}$	M1	substituting $-x$ for x in $f(x)$
		$=-\frac{2x}{1-x^2}=-\mathbf{f}(x)$	A1	
			[2]	
7	(ii)		M1	Recognisable attempt at a half turn rotation about O
			A1	Good curve starting from $x = -4$, asymptote $x = -1$ shown on graph.
		-4 -1 1 -4		(Need not state -4 and -1 explicitly as long as graph is reasonably to scale.) Condone if curve starts to the left of $x = -4$.
			[2]	$= - \tau.$

Q	uestion	Answer	Marks	Guidance
8	(i)	(1, 0) and (0, 1)	B1B1	x = 0, y = 1; y = 0, x = 1
			[2]	
8	(ii)	$f'(x) = 2(1-x)e^{2x} - e^{2x}$	B1	$d/dx(e^{2x}) = 2e^{2x}$
			M1	product rule consistent with their derivatives
		$=\mathrm{e}^{2x}(1-2x)$	A1	correct expression, so $(1 - x)e^{2x} - e^{2x}$ is B0M1A0
		f '(x) = 0 when $x = \frac{1}{2}$	M1dep	setting their derivative to 0 dep 1 st M1
			A1cao	$x = \frac{1}{2}$
		$y = \frac{1}{2} e$	B1	allow $\frac{1}{2} e^1$ isw
			[6]	
8	(iii)	$A = \int_0^1 (1-x) \mathrm{e}^{2x} \mathrm{d}x$	B1	correct integral and limits; condone no dx (limits may be seen later)
		$u = (1 - x), u' = -1, v' = e^{2x}, v = \frac{1}{2} e^{2x}$	M1	<i>u</i> , <i>u'</i> , <i>v'</i> , <i>v</i> , all correct; or if split up $u = x$, $u' = 1$, $v' = e^{2x}$, $v = \frac{1}{2}e^{2x}$
		$\Rightarrow A = \left[\frac{1}{2}(1-x)e^{2x}\right]_{0}^{1} - \int_{0}^{1}\frac{1}{2}e^{2x}.(-1)dx$	A1	condone incorrect limits; or, from above, $\left[\frac{1}{2}xe^{2x}\right]_0^1 - \int_0^1 \frac{1}{2}e^{2x}dx$
		$= \left[\frac{1}{2}(1-x)e^{2x} + \frac{1}{4}e^{2x}\right]_{0}^{1}$	A1	o.e. if integral split up; condone incorrect limits
		$= \frac{1}{4} e^2 - \frac{1}{2} - \frac{1}{4}$		
		$= \frac{1}{4} (e^2 - 3) *$	A1cao	NB AG
			[5]	

PMT

4753/01

Mark Scheme

Q	uestion	Answer	Marks	Guidance
8	(iv)	$g(x) = 3f(\frac{1}{2}x) = 3(1 - \frac{1}{2}x)e^x$	B1	o.e; mark final answer
		y (1, 3e/2) (0, 3)	B1	through $(2,0)$ and $(0,3)$ – condone errors in writing coordinates (e.g. $(0,2)$).
			B1dep	reasonable shape, dep previous B1
		$y = f(x)$ $(2, 0) \Rightarrow_{x}$	B1	TP at (1, $3e/2$) or (1, 4.1) (or better). (Must be evidence that $x = 1$, $y = 4.1$ is indeed the TP – appearing in a table of values is not enough on its own.)
			[4]	
8	(v)	$6 \times \frac{1}{4} (e^2 - 3) [= 3(e^2 - 3)/2]$	B1	o.e. mark final answer
			[1]	

June	2013
------	------

Question		n	Answer	Marks	Guidance
9	(i)		$a = \frac{1}{2}$	B1	allow $x = \frac{1}{2}$
				[1]	
9	(ii)		$y^3 = \frac{x^3}{2x - 1}$		
			$2^{-2} dy (2x-1)3x^2 - x^3.2$	B1	$3y^2 dy/dx$
			$\Rightarrow 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(2x-1)3x^2 - x^3 \cdot 2}{(2x-1)^2}$	M1	Quotient (or product) rule consistent with their derivatives; $(v du + u dv)/v^2 M0$
				A1	correct RHS expression – condone missing bracket
			$=\frac{6x^3-3x^2-2x^3}{(2x-1)^2}=\frac{4x^3-3x^2}{(2x-1)^2}$	A1	
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x^3 - 3x^2}{3y^2(2x - 1)^2} *$	A1	NB AG penalise omission of bracket in QR at this stage
			$dy/dx = 0$ when $4x^3 - 3x^2 = 0$	M1	
			$\Rightarrow x^2(4x-3) = 0, x = 0 \text{ or } \frac{3}{4}$	A1	if in addition $2x - 1 = 0$ giving $x = \frac{1}{2}$, A0
			$y^3 = (3/4)^3/1/2 = 27/32,$	M1	must use $x = \frac{3}{4}$; if (0, 0) given as an additional TP, then A0
			y = 0.945 (3sf)	A1	can infer M1 from answer in range 0.94 to 0.95 inclusive
				[9]	

June	2013
------	------

Question	Answer	Marks	Guidance
9 (iii)	$u = 2x - 1 \Longrightarrow \mathrm{d}u = 2\mathrm{d}x$		
	$\int \frac{x}{\sqrt[3]{2x-1}} dx = \int \frac{\frac{1}{2}(u+1)}{u^{1/3}} \frac{1}{2} du$	M1	$\frac{\frac{1}{2}(u+1)}{u^{1/3}}$ if missing brackets, withhold A1
	5	M1	$\times \frac{1}{2} du$ condone missing du here, but withhold A1
	$=\frac{1}{4}\int \frac{u+1}{u^{1/3}} du = \frac{1}{4}\int (u^{2/3} + u^{-1/3}) du *$	A1	NB AG
	area = $\int_{1}^{4.5} \frac{x}{\sqrt[3]{2x-1}} dx$	M1	correct integral and limits – may be inferred from a change of limits and P their attempt to integrate (their) $\frac{1}{4} (u^{2/3} + u^{-1/3})$
	when $x = 1$, $u = 1$, when $x = 4.5$, $u = 8$	A1	u = 1, 8 (or substituting back to x's and using 1 and 4.5)
	$=\frac{1}{4}\int_{1}^{8}(u^{2/3}+u^{-1/3})\mathrm{d}u$		
	$=\frac{1}{4}\left[\frac{3}{5}u^{5/3}+\frac{3}{2}u^{2/3}\right]_{1}^{8}$	B1	$\left[\frac{3}{5}u^{5/3} + \frac{3}{2}u^{2/3}\right]$ o.e. e.g. $\left[u^{5/3}/(5/3) + u^{2/3}/(2/3)\right]$
	$=\frac{1}{4}\left[\frac{96}{5}+6-\frac{3}{5}-\frac{3}{2}\right]$	A1	o.e. correct expression (may be inferred from a correct final answer)
	$= 5\frac{31}{40} = 5.775 \text{ or } \frac{231}{40}$	A1	cao, must be exact; mark final answer
		[8]	

June 2013

Additional Solutions

Q	Question		Answer	Marks	Guidance
5	((1)	$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right) = \frac{1}{2}\ln\left(\frac{2x-1}{2x+1}\right)$	M1	$\ln \sqrt{c} = \frac{1}{2} \ln c \text{ used}$
			$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \frac{1}{\left(\frac{2x-1}{2x+1}\right)} \frac{(2x+1)2 - (2x-1)2}{(2x+1)^2}$	A2	fully correct expression for the derivative
			$=\frac{1}{2}\frac{2x+1}{2x-1}\frac{4}{\left(2x+1\right)^2}=\frac{2}{\left(2x-1\right)\left(2x+1\right)}$		
			$\frac{1}{2x-1} - \frac{1}{2x+1} = \frac{2x+1 - (2x-1)}{(2x-1)(2x+1)}$		
			$=\frac{2}{(2x-1)(2x+1)}$		
			$\frac{1}{2x-1} - \frac{1}{2x+1} = \frac{2x+1 - (2x-1)}{(2x-1)(2x+1)} = \frac{2}{(2x-1)(2x+1)}$	A1	simplified and shown to be equivalent to $\frac{1}{2x-1} - \frac{1}{2x+1}$
				[4]	
5	((2)	$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right) = \ln\sqrt{2x-1} - \ln\sqrt{2x+1}$	M1	$\ln(a/b) = \ln a - \ln b \text{ used}$
			$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{\sqrt{2x-1}} \frac{1}{2} (2x-1)^{-1/2} \cdot 2 - \frac{1}{\sqrt{2x+1}} \frac{1}{2} (2x+1)^{-1/2} \cdot 2$	A2	fully correct expression
			$=\frac{1}{2x-1}-\frac{1}{2x+1}$	A1	simplified and shown to be equivalent to $\frac{1}{2x-1} - \frac{1}{2x+1}$
				[4]	

Q	Question		Answer	Marks	Guidance
5			$y = \ln\left(\sqrt{\frac{2x-1}{2x+1}}\right)$ $\frac{d y}{d x} = \frac{1}{\sqrt{\frac{2x-1}{2x+1}}} \frac{1}{2} \left(\frac{2x-1}{2x+1}\right)^{-1/2} \frac{(2x+1)2 - (2x-1)2}{(2x+1)^2} \text{ or }$ $\frac{1}{\frac{\sqrt{2x-1}}{\sqrt{2x+1}}} \frac{\sqrt{2x+1} \cdot \frac{1}{2} \cdot 2(2x-1)^{-1/2} - \sqrt{2x-1} \cdot \frac{1}{2} \cdot 2(2x+1)^{-1/2}}{\sqrt{2x+1}^2}$	M1 A2	$\frac{1}{u} \times \text{their } u' \text{ where } u = \sqrt{\frac{2x-1}{2x+1}} \text{ or } \frac{\sqrt{2x-1}}{\sqrt{2x+1}} \text{ (any attempt at } u' \text{ will do)}$ o.e. any completely correct expression for the derivative
			$\frac{\sqrt{2x+1}}{\sqrt{2x+1}} = \frac{1}{2} \left(\frac{2x+1}{2x-1}\right) \frac{4}{(2x+1)^2} = \frac{2}{(2x-1)(2x+1)}$ $\frac{1}{2x-1} - \frac{1}{2x+1} = \frac{(2x+1) - (2x-1)}{(2x-1)(2x+1)} = \frac{2}{(2x-1)(2x+1)}$	A1 [4]	or = $\frac{\sqrt{2x+1}}{\sqrt{2x-1}} \frac{(2x+1) - (2x-1)}{(2x+1)^{3/2} (2x-1)^{1/2}} = \frac{2}{(2x+1)(2x-1)}$ simplified and correctly shown to be equivalent to $\frac{1}{2x-1} - \frac{1}{2x+1}$
9	(ii)	(1)	$y = \frac{x}{(2x-1)^{1/3}}$ $\Rightarrow \frac{dy}{dx} = \frac{(2x-1)^{1/3} \cdot 1 - x \cdot (1/3)(2x-1)^{-2/3} \cdot 2}{(2x-1)^{2/3}}$ $= \frac{6x - 3 - 2x}{3(2x-1)^{4/3}} = \frac{4x - 3}{3(2x-1)^{4/3}}$ $= \frac{(4x-3)x^2}{3y^2(2x-1)^{2/3}(2x-1)^{4/3}} = \frac{4x^3 - 3x^2}{3y^2(2x-1)^2}$	M1 A1 M1 A1 A1	quotient rule or product rule on <i>y</i> – allow one slip correct expression for the derivative factorising or multiplying top and bottom by $(2x - 1)^{2/3}$ establishing equivalence with given answer NB AG

Question		n	Answer	Marks	Guidance
9	(ii)		$y = \left(\frac{x^{3}}{(2x-1)}\right)^{1/3}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{3} \left(\frac{x^{3}}{(2x-1)}\right)^{-2/3} \frac{(2x-1) \cdot 3x^{2} - x^{3} \cdot 2}{(2x-1)^{2}}$ $= \frac{1}{3} \frac{4x^{3} - 3x^{2}}{x^{2}(2x-1)^{4/3}} = \frac{4x-3}{3(2x-1)^{4/3}}$ $= \frac{(4x-3)x^{2}}{3y^{2}(2x-1)^{2/3}(2x-1)^{4/3}} = \frac{4x^{3} - 3x^{2}}{3y^{2}(2x-1)^{2}}$		$\frac{1}{3} \left(\frac{x^3}{(2x-1)} \right)^{-2/3} \times \dots$ $\dots \times \frac{(2x-1) \cdot 3x^2 - x^3 \cdot 2}{(2x-1)^2}$ establishing equivalence with given answer NB AG
9	(ii)	(3)	$y^{3}(2x-1) = x^{3}$ $3y^{2} \frac{dy}{dx}(2x-1) + y^{3} \cdot 2 = 3x^{2}$	B1	$d/dx(y^3) = 3y^2(dy/dx)$
				M1	product rule on $y^3(2x-1)$ or $2xy^3$
				A1	correct equation
			$\frac{dy}{dx} = \frac{3x^2 - 2y^3}{3y^2(2x - 1)}$ $= \frac{3x^2 - 2\frac{x^3}{(2x - 1)}}{3y^2(2x - 1)}$ $= \frac{3x^2(2x - 1) - 2x^3}{3y^2(2x - 1)^2} = \frac{6x^3 - 3x^2 - 2x^3}{3y^2(2x - 1)^2} = \frac{4x^3 - 3x^2}{3y^2(2x - 1)^2}$	M1 A1	subbing for 2y ³ NB AG